12 research outputs found

    ELECTRODEPOSITION BEHAVIOUR OF CADMIUM TELLURIDE FROM CHOLINE CHLORIDE-UREA IONIC LIQUIDS

    No full text
    This paper reports the electrodeposition of Cd and CdTe films on Pt using ionic liquids based on choline chloride: urea eutectic mixture (ChCl-urea, 1:2 moles) in the 25-60 0 C temperature range. TeO 2 and CdCl 2 were dissolved in ChCl:urea ionic liquid at concentrations in the range of 0.1-0.5mM and 50-100mM, respectively. The mechanism of Cd and CdTe electrodeposition was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. In the case of simultaneous presence of Cd 2+ and Te 4+ ions in ChCl-urea ionic liquid as supporting electrolyte the recorded cyclic voltammograms had more complex shapes. On the cathodic scan the massive deposition of CdTe took place. On the anodic branch of this voltammogram two oxidation peaks occur evidently, the first one being certainly due to the dissolution of CdTe compound deposit. The second anodic peak is probably dissolution of a CdTe compound riched in Te or even a dissolution of pure tellurium firstly deposited. In a series of experiments we studied the electric conductive properties of CdTe films freshly prepared.The electrolyses for films deposition were also carried out using platinum sheets in ionic liquid without stirring

    A Combined Strategy to Improve the Performance of Dental Alloys Using a New CoCrNbMoZr Alloy with Mn and Si Coated via an Anodic Oxidation Procedure

    No full text
    The aim of the paper is based on a combined approach to improve dental alloy performance using a new Ni-free Co–Cr composition with Mo, Nb and Zr and coated with an anodic oxidation film. The coated and uncoated samples were surface characterized by performing SEM (scanning electronic microscopy), XRD (X-rays diffraction) contact angle measurements and corrosion studies with open circuit potential, potentiodynamic polarization and EIS (impedance electrochemical spectroscopy) procedures. The SEM equipment with an EDX (Energy-dispersive X-ray spectroscopy) module indicated the sample morphology and the XRD investigations established the formation of the oxides. The electrochemical procedures were performed in Ericsson artificial saliva for coated samples in various conditions. Based on all the experiments, including the decrease in the hydrophobic character of the uncoated samples and the decrease in the hydrophilic values of the anodized alloys, the improved performance of the coated samples was established as a conclusion

    Oxidation Behavior of an Austenitic Steel (Fe, Cr and Ni), the 310 H, in a Deaerated Supercritical Water Static System

    No full text
    The aim of this work was to study the corrosion behavior of a Fe-Cr-Ni alloy (310 H stainless steel) in water at a supercritical temperature of 550 °C and a pressure of 250 atm for up to 2160 h. At supercritical temperature, water is a highly aggressive environment, and the corrosion of structural materials used in a supercritical water-cooled nuclear reactor (SCWR) is a critical problem. Selecting proper candidate materials is one key issue for the development of SCWRs. After exposure to deaerated supercritical water, the oxides formed on the 310 H SS surface were characterized using a gravimetric analysis, a metallographic analysis, and electrochemical methods. Gravimetric analysis showed that, due to oxidation, all the tested samples gained weight, and oxidation of 310H stainless steel at 550 °C follows parabolic rate, indicating that it is driven by a diffusion process. The data obtained by microscopic metallography concord with those obtained by gravimetric analysis and show that the oxides layer has a growing tendency in time. At the same time, the results obtained by electrochemical impedance spectroscopy (EIS) measurements indicate the best corrosion resistance of Cr, and (Fe, Mn) Cr2O4 oxides developed on the samples surface after 2160 h of oxidation. Based on the results obtained, a strong correlation between gravimetric analysis, metallographic analysis, and electrochemical methods was found

    Corrosion Testing of CrN<sub>x</sub>-Coated 310 H Stainless Steel under Simulated Supercritical Water Conditions

    No full text
    The paper’s aim is the assessment of corrosion behaviour of a CrNx-coated 310 H stainless steel under simulated supercritical water conditions (550 °C and 25 MPa) for up to 2160 h. The CrNx coating was obtained by the thermionic vacuum arc (TVA) method. The oxides grown on this coating were characterized using metallographic and gravimetric analysis, SEM with EDS, and grazing incidence X-ray diffraction (GIXRD). A diffusion mechanism drives oxidation kinetics because it follows a parabolic law. By XRD analysis, the presence of Cr2O3 and Fe3O4 on the surface of the autoclaved CrNx-coated 310 H samples were highlighted. Corrosion susceptibility assessment was performed by electrochemical impedance spectroscopy (EIS) and linear potentiodynamic polarization. EIS impedance spectra show the presence of two capacitive semicircles in the Nyquist diagram, highlighting both the presence of the CrNx coating and the oxide film formed during autoclaving on the 310 H stainless steel. Very low corrosion rates, with values up to 11 nm × year−1, obtained in the case of autoclaved for 2160 h, CrNx-coated samples indicated that the oxides formed on these samples are protective and provide better corrosion resistance. The determination of micro hardness Vickers completed the above investigation

    Advanced Procedure of Simultaneous Electrodeposition from a Natural Deep Eutectic Solvent of a Drug and a Polymer Used to Improve TiZr Alloy Behavior

    No full text
    This paper presents research about the embedding and release of gentamicin from an electrochemical deposition of polypyrrole from ionic liquids such as choline chloride on TiZr bioalloy. The electrodeposited films were morphologically investigated using scanning electron microscopy (SEM) with an EDX module, and polypyrrole and gentamicin were both identified using structural FT-IR analysis. The film’s characterization was completed with an evaluation of hydrophilic–hydrophobic balance, with electrochemical stability measurements in PBS and with antibacterial inhibition. A decrease in the value of the contact angle was observed from 47.06° in the case of the uncoated sample to 8.63° in the case of the sample covered with PPy and GS. Additionally, an improvement in the anticorrosive properties of the coating was observed by increasing the efficiency to 87.23% in the case of TiZr–PPy–GS. A kinetic study of drug release was performed as well. The drug molecule might be provided by the PPy–GS coatings for up to 144 h. The highest amount released was calculated to be 90% of the entire drug reservoir capacity, demonstrating the effectiveness of the coatings. A non-Fickian behavior was established as a mechanism for the release profiles of the gentamicin from the polymer layer

    Aspects of Applied Chemistry Related to Future Goals of Safety and Efficiency in Materials Development for Nuclear Energy

    No full text
    The present paper is a narrative review focused on a few important aspects and moments of trends surrounding materials and methods in sustainable nuclear energy, as an expression of applied chemistry support for more efficiency and safety. In such context, the paper is focused firstly on increasing alloy performance by modifying compositions, and elaborating and testing novel coatings on Zr alloys and stainless steel. For future generation reactor systems, the paper proposes high entropy alloys presenting their composition selection and irradiation damage. Nowadays, when great uncertainties and complex social, environmental, and political factors influence energy type selection, any challenge in this field is based on the concept of increased security and materials performance leading to more investigations into applied science

    Long-Term Corrosion Testing of Zy-4 in a LiOH Solution under High Pressure and Temperature Conditions

    No full text
    The fuel cladding is one of the most important structural components for maintaining the integrity of a fuel channel and for safely exploitation of a nuclear power plant. The corrosion behavior of a fuel cladding material, Zy-4, under high pressure and temperatures conditions, was analyzed in a static isothermal autoclave under simulated primary water conditions—a LiOH solution at 310 °C and 10 MPa for up to 3024 h. After this, the oxides grown on the Zy-4 sample surface were characterized using electrochemical measurements, gravimetric analysis, metallographic analysis, SEM and XPS. The maximum oxide thicknesses evaluated by gravimetric and SEM measurements were in good agreement; both values were around 1.2 µm. The optical light microscopy (OLM) investigations identified the presence of small hydrides uniformly distributed horizontally across the alloy. EIS impedance spectra showed an increase in the oxide impedance for the samples oxidized for a long time. EIS plots has the best fit with an equivalent circuit which illustrated an oxide model that has two oxide layers: an inner oxide layer and outer layer. The EIS results showed that the inner layer was a barrier layer, and the outer layer was a porous layer. Potentiodynamic polarization results demonstrated superior corrosion resistance of the samples tested for longer periods of time. By XPS measurements we identified all five oxidation states of zirconium: Zr0 located at 178.5 eV; Zr4+ at 182.8 eV; and the three suboxides, Zr+, Zr2+ and Zr3+ at 179.7, 180.8 and 181.8 eV, respectively. The determination of Vickers microhardness completed the investigation

    In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy

    No full text
    Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(&epsilon;-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications

    In Vitro Macrophage Immunomodulation by Poly(ε-caprolactone) Based-Coated AZ31 Mg Alloy

    No full text
    Due to its excellent bone-like mechanical properties and non-toxicity, magnesium (Mg) and its alloys have attracted great interest as biomaterials for orthopaedic applications. However, their fast degradation rate in physiological environments leads to an acute inflammatory response, restricting their use as biodegradable metallic implants. Endowing Mg-based biomaterials with immunomodulatory properties can help trigger a desired immune response capable of supporting a favorable healing process. In this study, electrospun poly(ε-caprolactone) (PCL) fibers loaded with coumarin (CM) and/or zinc oxide nanoparticles (ZnO) were used to coat the commercial AZ31 Mg alloy as single and combined formulas, and their effects on the macrophage inflammatory response and osteoclastogenic process were investigated by indirect contact studies. Likewise, the capacity of the analyzed samples to generate reactive oxygen species (ROS) has been investigated. The data obtained by attenuated total reflection Fourier-transform infrared (FTIR-ATR) and X-ray photoelectron spectroscopy (XPS) analyses indicate that AZ31 alloy was perfectly coated with the PCL fibers loaded with CM and ZnO, which had an important influence on tuning the release of the active ingredient. Furthermore, in terms of degradation in phosphate-buffered saline (PBS) solution, the PCL-ZnO- and secondary PCL-CM-ZnO-coated samples exhibited the best corrosion behaviour. The in vitro results showed the PCL-CM-ZnO and, to a lower extent, PCL-ZnO coated sample exhibited the best behaviour in terms of inflammatory response and receptor activator of nuclear factor kappa-B ligand (RANKL)-mediated differentiation of RAW 264.7 macrophages into osteoclasts. Altogether, the results obtained suggest that the coating of Mg alloys with fibrous PCL containing CM and/or ZnO can constitute a feasible strategy for biomedical applications
    corecore