5 research outputs found
Abrasion-Induced Acceleration of Melt Crystallisation of Wet Comminuted Polybutylene Terephthalate (PBT)
Within this contribution, the effect of grinding media wear on the melt crystallisation of polybutylene terephthalate (PBT) is addressed. PBT was wet ground in a stirred media mill in ethanol using different grinding media beads (silica, chrome steel, cerium-stabilised and yttrium-stabilised zirconia) at comparable stress energies with the intention to use the obtained particles as feed materials for the production of feedstocks for laser powder bed fusion additive manufacturing (PBF-AM). In PBF-AM, the feedstock’s optical, rheological and especially thermal properties—including melt crystallisation kinetics—strongly influence the processability and properties of the manufactured parts. The influence of process parameters and used grinding media during wet comminution on the optical properties, crystal structure, molar mass distribution, inorganic content (wear) and thermal properties of the obtained powders is discussed. A grinding media-dependent acceleration of the melt crystallisation could be attributed to wear particles serving as nuclei for heterogeneous crystallisation. Yttrium-stabilised zirconia grinding beads proved to be the most suitable for the production of polymer powders for the PBF process in terms of (fast) comminution kinetics, unchanged optical properties and the least accelerated crystallisation kinetics
Biodegradable Polylactide Supraparticle Powders with Functional Additives for Biomedical Additive Manufacturing
Abstract
Additive manufacturing, in particular powder bed‐based fabrication processes hold promise to revolutionize biomedical engineering for the ability to provide customized, functional implants, for example as bone replacement materials. However, providing functional powder particles that unify material requirements for biodegradable and bioactive biomaterials and process requirements to enable successful powder bed fusion remains an unmet challenge. Here, a supraparticle‐based approach to create biodegradable poly(lactic acid) and composite powders for the additive manufacturing of bone replacement materials is introduced. Colloidal binary Ca‐SiO2 glasses and hydroxyapatite are incorporated as bioactive functional additives to support the formation of bone‐like calcium phosphate. The supraparticle powders are prepared by a scalable spray‐drying process, which offers control of particle size, shape, and composition. All process‐relevant powder characteristics are analyzed as a function of composition and structure, including flowability, thermal, and melt rheological properties. The optimized supraparticle powders are successfully used in the process of laser powder bed fusion of polymers to prepare macroscopic specimens via additive manufacturing. It is demonstrated that the material combination of the composites provides relevant functional properties, including biodegradation and bioactivity. The process provides a flexible and adjustable toolbox for the design of functional powders toward biomedical additive manufacturing
The GRAVITY+ Project: Towards All-sky, Faint-Science, High-Contrast Near-Infrared Interferometry at the VLTI
The GRAVITY instrument has been revolutionary for near-infrared
interferometry by pushing sensitivity and precision to previously unknown
limits. With the upgrade of GRAVITY and the Very Large Telescope Interferometer
(VLTI) in GRAVITY+, these limits will be pushed even further, with vastly
improved sky coverage, as well as faint-science and high-contrast capabilities.
This upgrade includes the implementation of wide-field off-axis
fringe-tracking, new adaptive optics systems on all Unit Telescopes, and laser
guide stars in an upgraded facility. GRAVITY+ will open up the sky to the
measurement of black hole masses across cosmic time in hundreds of active
galactic nuclei, use the faint stars in the Galactic centre to probe General
Relativity, and enable the characterisation of dozens of young exoplanets to
study their formation, bearing the promise of another scientific revolution to
come at the VLTI.Comment: Published in the ESO Messenge
Multidimensional Fractionation of Particles
The increasing complexity in particle science and technology requires the ability to deal with multidimensional property distributions. We present the theoretical background for multidimensional fractionations by transferring the concepts known from one dimensional to higher dimensional separations. Particles in fluids are separated by acting forces or velocities, which are commonly induces by external fields, e.g., gravitational, centrifugal or electro-magnetic fields. In addition, short-range force fields induced by particle interactions can be employed for fractionation. In this special case, nanoparticle chromatography is a recent example. The framework for handling and characterizing multidimensional separation processes acting on multidimensional particle size distributions is presented. Illustrative examples for technical realizations are given for shape-selective separation in a hydrocyclone and for density-selective separation in a disc separator
Enhancing Photoelectric Powder Deposition of Polymers by Charge Control Substances
Charge control substances (CCS) as additives for polymer powders are investigated to make polymer powders suitable for the electrophotographic powder deposition in powder-based additive manufacturing. The use of CCS unifies the occurring charge of a powder, which is crucial for this novel deposition method. Therefore, commercially available polymer powder is functionalized via dry coating in a shaker mixer with two different CCS and analyzed afterwards. The flowability and the degree of coverage of additives on the surface are used to evaluate the coating process. The thermal properties are analyzed by use of differential scanning calorimetry. Most important, the influence of the CCS on the powder charge is shown by measurements of the electrostatic surface potential at first and the powder deposition itself is performed and analyzed with selected formulations afterwards to show the potential of this method. Finally, tensile strength specimens are produced with the conventional deposition method in order to show the usability of the CCS for current machines