10 research outputs found

    Automated segmentation of the median nerve in patients with carpal tunnel syndrome

    No full text
    Abstract Machine learning and deep learning are novel methods which are revolutionizing medical imaging. In our study we trained an algorithm with a U-Net shaped network to recognize ultrasound images of the median nerve in the complete distal half of the forearm and to measure the cross-sectional area at the inlet of the carpal tunnel. Images of 25 patient hands with carpal tunnel syndrome (CTS) and 26 healthy controls were recorded on a video loop covering 15 cm of the distal forearm and 2355 images were manually segmented. We found an average Dice score of 0.76 between manual and automated segmentation of the median nerve in its complete course, while the measurement of the cross-sectional area at the carpal tunnel inlet resulted in a 10.9% difference between manually and automated measurements. We regard this technology as a suitable device for verifying the diagnosis of CTS

    Bibliography

    No full text

    THE BIOLOGY OF METAMORPHOSIS

    No full text

    Fast Track Algorithm: How To Differentiate A “Scleroderma Pattern” From A “Non-Scleroderma Pattern”

    Get PDF
    Objectives: This study was designed to propose a simple “Fast Track algorithm” for capillaroscopists of any level of experience to differentiate “scleroderma patterns” from “non-scleroderma patterns” on capillaroscopy and to assess its inter-rater reliability. Methods: Based on existing definitions to categorise capillaroscopic images as “scleroderma patterns” and taking into account the real life variability of capillaroscopic images described standardly according to the European League Against Rheumatism (EULAR) Study Group on Microcirculation in Rheumatic Diseases, a fast track decision tree, the “Fast Track algorithm” was created by the principal expert (VS) to facilitate swift categorisation of an image as “non-scleroderma pattern (category 1)” or “scleroderma pattern (category 2)”. Mean inter-rater reliability between all raters (experts/attendees) of the 8th EULAR course on capillaroscopy in Rheumatic Diseases (Genoa, 2018) and, as external validation, of the 8th European Scleroderma Trials and Research group (EUSTAR) course on systemic sclerosis (SSc) (Nijmegen, 2019) versus the principal expert, as well as reliability between the rater pairs themselves was assessed by mean Cohen's and Light's kappa coefficients. Results: Mean Cohen's kappa was 1/0.96 (95% CI 0.95-0.98) for the 6 experts/135 attendees of the 8th EULAR capillaroscopy course and 1/0.94 (95% CI 0.92-0.96) for the 3 experts/85 attendees of the 8th EUSTAR SSc course. Light's kappa was 1/0.92 at the 8th EULAR capillaroscopy course, and 1/0.87 at the 8th EUSTAR SSc course. C Conclusion: For the first time, a clinical expert based fast track decision algorithm has been developed to differentiate a “non-scleroderma” from a “scleroderma pattern” on capillaroscopic images, demonstrating excellent reliability when applied by capillaroscopists with varying levels of expertise versus the principal expert and corroborated with external validation.Wo
    corecore