5,256 research outputs found
Isolation of high quality lignin as a by-product from ammonia percolation pretreatment of poplar wood
A two-step process combining percolation-mode ammonia pretreatment of poplar sawdust with mild organosolv purification of the extracted lignin produced high quality, high purity lignin in up to 31% yield and 50% recovery. The uncondensed fraction of the isolated lignin was up to 34%, close to that the native lignin (40%). Less lignin was recovered after pretreatment in batch mode, apparently due to condensation during the longer residence time of the solubilised lignin at elevated temperature. The lignin recovery was directly correlated with its molecular weight and its nitrogen content. Low nitrogen incorporation, observed at high ammonia concentration, may be explained by limited homolytic cleavage of -O-4 bonds. Ammonia concentrations from 15% to 25% (w/w) gave similar results in terms of lignin structure, yield and recovery
Organosolv pretreatment of Sitka spruce wood: conversion of hemicelluloses to ethyl glycosides
A range of organosolv pretreatments, using ethanol:water mixtures with dilute sulphuric acid, were applied to Sitka spruce sawdust with the aim of generating useful co-products as well as improving saccharification yield. The most efficient of the pretreatment conditions, resulting in subsequent saccharification yields of up to 86%, converted a large part of the hemicellulose sugars to their ethyl glycosides as identified by GC/MS. These conditions also reduced conversion of pentoses to furfural, the ethyl glycosides being more stable to dehydration than the parent pentoses. Through comparison with the behaviour of model compounds under the same reaction conditions it was shown that the anomeric composition of the products was consistent with a predominant transglycosylation reaction mechanism, rather than hydrolysis followed by glycosylation. The ethyl glycosides have potential as intermediates in the sustainable production of high-value chemicals
Quiet Planting in the Locked Constraint Satisfaction Problems
We study the planted ensemble of locked constraint satisfaction problems. We
describe the connection between the random and planted ensembles. The use of
the cavity method is combined with arguments from reconstruction on trees and
first and second moment considerations; in particular the connection with the
reconstruction on trees appears to be crucial. Our main result is the location
of the hard region in the planted ensemble. In a part of that hard region
instances have with high probability a single satisfying assignment.Comment: 21 pages, revised versio
First-order transitions and the performance of quantum algorithms in random optimization problems
We present a study of the phase diagram of a random optimization problem in
presence of quantum fluctuations. Our main result is the characterization of
the nature of the phase transition, which we find to be a first-order quantum
phase transition. We provide evidence that the gap vanishes exponentially with
the system size at the transition. This indicates that the Quantum Adiabatic
Algorithm requires a time growing exponentially with system size to find the
ground state of this problem.Comment: 4 pages, 4 figures; final version accepted on Phys.Rev.Let
Transverse Instability of Avalanches in Granular Flows down Incline
Avalanche experiments on an erodible substrate are treated in the framework
of ``partial fluidization'' model of dense granular flows. The model identifies
a family of propagating soliton-like avalanches with shape and velocity
controlled by the inclination angle and the depth of substrate. At high
inclination angles the solitons display a transverse instability, followed by
coarsening and fingering similar to recent experimental observation. A primary
cause for the transverse instability is directly related to the dependence of
soliton velocity on the granular mass trapped in the avalanche.Comment: 3 figures, 4 pages, submitted to Phys Rev Let
- …