1,179 research outputs found

    Cave Levels, Marine Terraces, Paleoshorelines, and the Water Table in Peninsular Florida

    Get PDF
    Levels of passages are a common feature of many cave systems around the world. Likewise, coastal and marine terraces are common in coastal plain settings. This paper extends the discussion of cave levels from traditional research sites in the interior lowlands of the United States to the Atlantic Coastal Plains, namely peninsular Florida. Are there levels in Florida caves, and is there a link between the elevation of cave levels, marine terraces, paleoshorelines, and thus the water table, above and below present sea level in peninsular Florida

    Instanton induced charged fermion and neutrino masses in a minimal Standard Model scenario from intersecting D-branes

    Full text link
    String instanton Yukawa corrections from Euclidean D-branes are investigated in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1) D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it is found that superpotential contributions are induced by string instantons for the perturbatively forbidden entries of the up and down quark mass matrices. Analogous non-perturbative effects generate heavy Majorana neutrino masses and a Dirac neutrino texture with factorizable Yukawa couplings. For this latter case, a specific example is worked out where it is shown how this texture can reconcile the neutrino data.Comment: 17 pages, 3 figure

    Instanton Induced Neutrino Majorana Masses in CFT Orientifolds with MSSM-like spectra

    Get PDF
    Recently it has been shown that string instanton effects may give rise to neutrino Majorana masses in certain classes of semi-realistic string compactifications. In this paper we make a systematic search for supersymmetric MSSM-like Type II Gepner orientifold constructions admitting boundary states associated with instantons giving rise to neutrino Majorana masses and other L- and/or B-violating operators. We analyze the zero mode structure of D-brane instantons on general type II orientifold compactifications, and show that only instantons with O(1) symmetry can have just the two zero modes required to contribute to the 4d superpotential. We however discuss how the addition of fluxes and/or possible non-perturbative extensions of the orientifold compactifications would allow also instantons with Sp(2)Sp(2) and U(1) symmetries to generate such superpotentials. In the context of Gepner orientifolds with MSSM-like spectra, we find no models with O(1) instantons with just the required zero modes to generate a neutrino mass superpotential. On the other hand we find a number of models in one particular orientifold of the Gepner model (2,4,22,22)(2,4,22,22) with Sp(2)Sp(2) instantons with a few extra uncharged non-chiral zero modes which could be easily lifted by the mentioned effects. A few more orientifold examples are also found under less stringent constraints on the zero modes. This class of Sp(2)Sp(2) instantons have the interesting property that R-parity conservation is automatic and the flavour structure of the neutrino Majorana mass matrices has a simple factorized form.Comment: 68 pages, 2 figures; v2. typos corrected, refs adde

    F-theory, GUTs, and the Weak Scale

    Full text link
    In this paper we study a deformation of gauge mediated supersymmetry breaking in a class of local F-theory GUT models where the scale of supersymmetry breaking determines the value of the mu term. Geometrically correlating these two scales constrains the soft SUSY breaking parameters of the MSSM. In this scenario, the hidden SUSY breaking sector involves an anomalous U(1) Peccei-Quinn symmetry which forbids bare mu and B mu terms. This sector typically breaks supersymmetry at the desired range of energy scales through a simple stringy hybrid of a Fayet and Polonyi model. A variant of the Giudice-Masiero mechanism generates the value mu ~ 10^2 - 10^3 GeV when the hidden sector scale of supersymmetry breaking is F^(1/2) ~ 10^(8.5) GeV. Further, the B mu problem is solved due to the mild hierarchy between the GUT scale and Planck scale. These models relate SUSY breaking with the QCD axion, and solve the strong CP problem through an axion with decay constant f_a ~ M_(GUT) * mu / L, where L ~ 10^5 GeV is the characteristic scale of gaugino mass unification in gauge mediated models, and the ratio \mu / L ~ M_(GUT)/M_(pl) ~ 10^(-3). We find f_a ~ 10^12 GeV, which is near the high end of the phenomenologically viable window. Here, the axino is the goldstino mode which is eaten by the gravitino. The gravitino is the LSP with a mass of about 10^1 - 10^2 MeV, and a bino-like neutralino is (typically) the NLSP with mass of about 10^2 - 10^3 GeV. Compatibility with electroweak symmetry breaking also determines the value of tan(beta) ~ 30 +/- 7.Comment: v3: 94 pages, 9 figures, clarification of Fayet-Polonyi model and instanton corrections to axion potentia

    Non-Perturbative Effects on a Fractional D3-Brane

    Full text link
    In this note we study the N=1 abelian gauge theory on the world volume of a single fractional D3-brane. In the limit where gravitational interactions are not completely decoupled we find that a superpotential and a fermionic bilinear condensate are generated by a D-brane instanton effect. A related situation arises for an isolated cycle invariant under an orientifold projection, even in the absence of any gauge theory brane. Moreover, in presence of supersymmetry breaking background fluxes, such instanton configurations induce new couplings in the 4-dimensional effective action, including non-perturbative contributions to the cosmological constant and non-supersymmetric mass terms.Comment: 18 pages, v3: refs adde

    Stringy Instantons and Cascading Quivers

    Get PDF
    D-brane instantons can perturb the quantum field theories on space-time filling D-branes by interesting operators. In some cases, these D-brane instantons are novel "stringy" effects (not interpretable directly as instanton effects in the low-energy quantum field theory), while in others the D-brane instantons can be directly interpreted as field theory effects. In this note, we describe a situation where both perspectives are available, by studying stringy instantons in quivers which arise at simple Calabi-Yau singularities. We show that a stringy instanton which wraps an unoccupied node of the quiver, and gives rise to a non-perturbative mass in the space-time field theory, can be reinterpreted as a conventional gauge theory effect by going up in an appropriate renormalization group cascade. Interestingly, in the cascade, the contribution of the stringy instanton does not come from gauge theory instantons but from strong coupling dynamics.Comment: 17 pages, 6 figures, harvma

    Lectures on Cosmic Inflation and its Potential Stringy Realizations

    Full text link
    These notes present a brief introduction to Hot Big Bang cosmology and Cosmic Inflation, together with a selection of some recent attempts to embed inflation into string theory. They provide a partial description of lectures presented in courses at Dubrovnik in August 2006, at CERN in January 2007 and at Cargese in August 2007. They are aimed at graduate students with a working knowledge of quantum field theory, but who are unfamiliar with the details of cosmology or of string theory.Comment: 68 pages, lectures given at Dubrovnik, Aug 2006; CERN, January 2007; and Cargese, Aug 200
    corecore