584 research outputs found

    SWEtaxben: A Swedish Tax/Benefit Micro Simulation Model and an Evaluation of a Swedish Tax Reform

    Get PDF
    The purpose of SWEtaxben is to evaluate the impact of changes in the tax/benefit systems on households as well as the central governmental budget. Relating to the micro simulation literature this model can be labeled a static micro simulation model with behavioral changes. This behavioral change takes two different forms and use two different types of models; first binary models that describe mobility in/out from non-work states such as old age pension, disability, unemployment, long term sickness and second models that describe change in working hours and welfare participation. Thus, apart from the choice to work or not to work, working hours conditional on working as well as welfare participation are treated as endogenous variables. As an application the model is used to evaluate the recent Swedish "make work pay" reform, effective from 2007 and further reinforced in 2008 and 2009. The key characteristic of this reform is an in-work tax credit and decreased state tax rate. Simulations performed by SWEtaxben show increased working hours at both the intensive as well as extensive margin. The tax decrease together with dynamic changes results in a strong increase in household's incomes but also a reduction in income inequality. However, even considering the increase in hours of work, the reform is far from being self-financed.micro simulation, tax-benefit system, in-work tax credit reform

    Studies of deep-sea sedimentary microtopography in the North Atlantic Ocean

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution January, 1978Many of the small-scale topographic features (dimensions of centimeters to kilometers) found on the Blake-Bahama Outer Ridge (western North Atiantic, water depth greater than 4000 m) and in the Rockall Trough (northeastern North Atlantic, water depth greater than 2000 m) have been formed as bed forms of deep currents. These bed forms, all developed in cohesive sediments, include current ripples (spacings of tens of centimeters, formed transverse to the flow), longitudinal triangular ripples (spacings of meters, formed in sandy muds and parallel to the flow), furrows (spacings of tens to 100's of meters, formed parallel to the flow and presently either erosional or depositional), and regular sediment waves (spacings of a few kilometers, now found oblique to the flow and migrating either upstream or downstream). The local distribution of any given bed form is influenced by the presence of larger features. Bed forms are often found in zones which strike parallel to the regional contours. Debris flows, affecting areas of 1000's to 10,000's of square kilometers, are also present in these areas. A debris flow studied in the Rockall Trough is erosional at its shallowest depths and depositional at greater depths. Gravitational flows strike perpendicular to the contours. Pockmarks (tens of meters in diameter, marking fluid seeps) are also found on the Blake-Bahama Outer Ridge. The larger topographic features (greater than several meters) with steep slopes (greater than about 20°) can be observed on surface echo-sounding profiles either as fields of regular hyperbolic echoes (e.g., echoes from regularly spaced furrows), fields of irregularly spaced, dissimilar hyperbolae (e.g., echoes from blocks, ridges, and folds in debris flows), or as regular features whose structure is often obscured by side echoes (e.g., echoes from sediment waves). Although near-bottom investigations are required to describe the features, the nature of the sea floor can often be inferred from the character of the echo-sounding profile. Similar echo-sounding records in different areas of the ocean indicate the presence of similar sea-floor features. The morphology of the bed forms studied and the current and temperature structure of the overlying water column lead to conclusions about bed form origin and present-day interactions with deep currents. Furrows form as erosional bed forms during high-velocity (>20? cm/sec) current events by large, helical secondary circulations in the bottom boundary layer. Once formed, furrows may develop into depositional features, or they may continue as erosional ones, depending on the local currents and the sediment supply. Large, regular sediment waves may be formed at current speeds of 5 to 10 cm/sec by lee waves generated by topographic irregularities on the sea floor, such as submarine canyons, or by instabilities in the flow of deep, contour-following currents. Sediment waves develop where there is an abundant supply of sediment and steady mean currents. Waves appear to migrate upstream where tidal current fluctuations are smaller than the mean velocity, and downstream where they are larger. Near-bottom currents appear to be faster on the downstream side of upstream-migrating sediment waves than on their upstream side. The resulting variations in bed shear stress lead to higher sedimentation rates on the upstream side and bed form migration in that direction.This research was made possible by National Science Foundation grants DES 73-06657 and OCE 76-22152, and Office of Naval Research contract N00014-74-C-0262; NR083-004 to Woods Hole Oceanographic Institution, NSF grant OCE 74-01671 to Lamont-Doherty Geological Observatory, and numerous NSF grants and ONR contracts to Scripps Institution of Oceanography

    Haverstraw Bay Benthic Habitat Characterization

    Get PDF
    High-resolution backscatter and bathymetric maps created by multibeam and sidescan sonar surveys were used to identify five different seafloor bottom types within Haverstraw Bay. Grab samples were collected within these areas to characterize sediment properties and macrofauna. Selected sampling locations were revisited and seafloor images were obtained with an HD underwater camera. Multivariate analysis was used to identify the most important factors explaining variations in community structure. Results indicated that categorical variables defining bottom types, grain size, and water depth can explain about 42% of community structure variation. In addition, shell length data collected for Rangia cuneata, an introduced species, indicated that successful spawning and recruitment occurred for this species during 2011, 2012, and 2013. An attempt to relate 2012-2014 hydrophone location data for Atlantic and Shortnose sturgeon to identified bottom types did not produce clear bottom preferences

    Retooling Cotton Growers for Improved Productivity in Mozambique: Implications of Integrated Crop Management Practices

    Get PDF
    In Mozambique average yields of seed cotton range from 400-750 kg/ha on smallholders’ farms, while those in research plots average 3,000 kg/ha. To improve productivity, integrated crop management (ICM) practices were promoted in cotton production systems, using farmer field schools (FFS). In addition, relevant information on cotton marketing was provided to the cotton growers. This paper examines the extent to which the initiative contributed to changes in farmer practices, productivity and income. The ICM farmers had significantly larger area (p<0.01) under cotton, which was due to an overall average increase of 0.19 ha above that of non-ICM farmers. Ninety seven per cent of the ICM farmers rated cotton as the key contributor to income compared to 80% of the non-ICM farmers. Net incomes from cotton were significantly higher (p<0.01) for the ICM farmers. The ICM farmers had better access to information and knowledge of cotton production compared to the other farmers. The ICM farmers used significantly (p<0.01) less pesticides by up to US$ 9.27 and realized better seed cotton yields of up to 250 kg/ha above non-ICM farmers. Efficient use of ICM practices contributed to sustained increase in productivity and incomes. Keywords: Productivity, sustainability, yield, income, pesticides

    The impact of Hurricane Sandy on the shoreface and inner shelf of Fire Island, New York : large bedform migration but limited erosion

    Get PDF
    © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution.. The definitive version was published in Continental Shelf Research 98 (2015): 13-25, doi:10.1016/j.csr.2015.03.001.We investigate the impact of superstorm Sandy on the lower shoreface and inner shelf offshore the barrier island system of Fire Island, NY using before-and-after surveys involving swath bathymetry, backscatter and CHIRP acoustic reflection data. As sea level rises over the long term, the shoreface and inner shelf are eroded as barrier islands migrate landward; large storms like Sandy are thought to be a primary driver of this largely evolutionary process. The “before” data were collected in 2011 by the U.S. Geological Survey as part of a long-term investigation of the Fire Island barrier system. The “after” data were collected in January, 2013, ~two months after the storm. Surprisingly, no widespread erosional event was observed. Rather, the primary impact of Sandy on the shoreface and inner shelf was to force migration of major bedforms (sand ridges and sorted bedforms) 10’s of meters WSW alongshore, decreasing in migration distance with increasing water depth. Although greater in rate, this migratory behavior is no different than observations made over the 15-year span prior to the 2011 survey. Stratigraphic observations of buried, offshore-thinning fluvial channels indicate that long-term erosion of older sediments is focused in water depths ranging from the base of the shoreface (~13-16 m) to ~21 m on the inner shelf, which is coincident with the range of depth over which sand ridges and sorted bedforms migrated in response to Sandy. We hypothesize that bedform migration regulates erosion over these water depths and controls the formation of a widely observed transgressive ravinement; focusing erosion of older material occurs at the base of the stoss (upcurrent) flank of the bedforms. Secondary storm impacts include the formation of ephemeral hummocky bedforms and the deposition of a mud event layer.This work was funded primarily by a rapid response grant from the Jackson School of Geosciences, The University of Texas/Austi

    Evaluation of Load-To-Strength Ratios in Metastatic Vertebrae and Comparison With Age- and Sex-Matched Healthy Individuals.

    Get PDF
    Vertebrae containing osteolytic and osteosclerotic bone metastases undergo pathologic vertebral fracture (PVF) when the lesioned vertebrae fail to carry daily loads. We hypothesize that task-specific spinal loading patterns amplify the risk of PVF, with a higher degree of risk in osteolytic than in osteosclerotic vertebrae. To test this hypothesis, we obtained clinical CT images of 11 cadaveric spines with bone metastases, estimated the individual vertebral strength from the CT data, and created spine-specific musculoskeletal models from the CT data. We established a musculoskeletal model for each spine to compute vertebral loading for natural standing, natural standing + weights, forward flexion + weights, and lateral bending + weights and derived the individual vertebral load-to-strength ratio (LSR). For each activity, we compared the metastatic spines' predicted LSRs with the normative LSRs generated from a population-based sample of 250 men and women of comparable ages. Bone metastases classification significantly affected the CT-estimated vertebral strength (Kruskal-Wallis, p < 0.0001). Post-test analysis showed that the estimated vertebral strength of osteosclerotic and mixed metastases vertebrae was significantly higher than that of osteolytic vertebrae (p = 0.0016 and p = 0.0003) or vertebrae without radiographic evidence of bone metastasis (p = 0.0010 and p = 0.0003). Compared with the median (50%) LSRs of the normative dataset, osteolytic vertebrae had higher median (50%) LSRs under natural standing (p = 0.0375), natural standing + weights (p = 0.0118), and lateral bending + weights (p = 0.0111). Surprisingly, vertebrae showing minimal radiographic evidence of bone metastasis presented significantly higher median (50%) LSRs under natural standing (p < 0.0001) and lateral bending + weights (p = 0.0009) than the normative dataset. Osteosclerotic vertebrae had lower median (50%) LSRs under natural standing (p < 0.0001), natural standing + weights (p = 0.0005), forward flexion + weights (p < 0.0001), and lateral bending + weights (p = 0.0002), a trend shared by vertebrae with mixed lesions. This study is the first to apply musculoskeletal modeling to estimate individual vertebral loading in pathologic spines and highlights the role of task-specific loading in augmenting PVF risk associated with specific bone metastatic types. Our finding of high LSRs in vertebrae without radiologically observed bone metastasis highlights that patients with metastatic spine disease could be at an increased risk of vertebral fractures even at levels where lesions have not been identified radiologically

    IODP workshop: developing scientific drilling proposals for the Argentina Passive Volcanic Continental Margin (APVCM) – basin evolution, deep biosphere, hydrates, sediment dynamics and ocean evolution

    Get PDF
    The Argentine margin contains important sedimentological, paleontological and chemical records of regional and local tectonic evolution, sea level, climate evolution and ocean circulation since the opening of the South Atlantic in the Late Jurassic–Early Cretaceous as well as the present-day results of post-depositional chemical and biological alteration. Despite its important location, which underlies the exchange of southern- and northern-sourced water masses, the Argentine margin has not been investigated in detail using scientific drilling techniques, perhaps because the margin has the reputation of being erosional. However, a number of papers published since 2009 have reported new high-resolution and/or multichannel seismic surveys, often combined with multi-beam bathymetric data, which show the common occurrence of layered sediments and prominent sediment drifts on the Argentine and adjacent Uruguayan margins. There has also been significant progress in studying the climatic records in surficial and near-surface sediments recovered in sediment cores from the Argentine margin. Encouraged by these recent results, our 3.5-day IODP (International Ocean Discovery Program) workshop in Buenos Aires (8–11 September 2015) focused on opportunities for scientific drilling on the Atlantic margin of Argentina, which lies beneath a key portion of the global ocean conveyor belt of thermohaline circulation. Significant opportunities exist to study the tectonic evolution, paleoceanography and stratigraphy, sedimentology, and biosphere and geochemistry of this margin.Facultad de Ciencias Naturales y Muse
    • …
    corecore