3 research outputs found

    Analysis of vascular inflammation against bioresorbable Zn–Ag-based alloys

    No full text
    Zinc (Zn) has emerged as a promising bioresorbable stent material because of its satisfactory corrosion behavior and excellent biocompatibility. However, for load-bearing implant applications, alloying is required to boost its mechanical properties as pure Zn exhibits poor strength. Unfortunately, an increase in inflammation relative to pure Zn is a commonly observed side effect of Zn alloys. Consequently, the development of a Zn-based alloy that can simultaneously feature improved mechanical properties and suppress inflammatory responses is a big challenge. Here, a bioresorbable, biocompatible Zn–Ag-based quinary alloy was comprehensively evaluated in vivo, in comparison to reference materials. The inflammatory and smooth muscle cellular response was characterized and correlated to metrics of neointimal (NI) growth. We found that implantation of the quinary alloy was associated with significantly improved inflammatory activities relative to the reference materials. Additionally, we found that inflammation, but not smooth muscle cell hyperplasia, significantly correlates to NI growth for Zn alloys. The results suggest that inflammation is the main driver of NI growth for Zn-based alloys and that the quinary Zn–Ag–Mn–Zr–Cu alloy may impart inflammation-resistance properties to arterial implants

    Improved Biocompatibility of Zn-Ag-based Stent Materials by Microstructure Refinement

    No full text
    The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here we investigate the biocompatibility of three Zn-based silver (Ag)-containing alloys, ranging from binary to quinary alloy systems. Selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. This experimental design was intended to clarify the relationship between elemental profile/microstructure and biocompatibility for the Zn-Ag system. We found that the quinary alloy system (Zn-4Ag-0.8Cu-0.6Mn-0.15Zr) performed significantly better, in terms of histomorphometry, than any alloy system we have evaluated to date. Furthermore, when solution treated to increase strength and ductility and reduce the fraction of Ag-rich phases, the quinary alloy biocompatibility further improved. In vitro corrosion testing and metallographic analysis of in vivo implants demonstrated a more uniform mode of corrosion for the solution treated alloy. We conclude that Zn-Ag alloys can be engineered through alloying to substantially reduce neointimal growth. The positive effect on neointimal growth can be further enhanced by dissolving the AgZn precipitates in the Zn matrix to improve the corrosion uniformity. These findings demonstrate that neointimal-forming cells can be regulated by elemental additions and microstructural changes in degradable Zn-based implant materials. STATEMENT OF SIGNIFICANCE: The metallurgical engineering of bioresorbable zinc (Zn)-based medical alloys would greatly benefit from clarification of the relationships between material properties and biological responses. Here, selected binary and quinary Zn-Ag-based alloys underwent solution treatment (ST) to increase the solubility of Ag-rich phases within the Zn bulk matrix, yielding two different microstructures (one without ST and a different one with ST) with the same elemental composition. We found that applying a thermal treatment restores mechanical strength and mitigates the strain rate sensitivity of Zn-Ag alloys by dissolving AgZn precipitates. Ag-rich nano-precipitates in Zn decrease biocompatibility, a phenomenon that can be counteracted by dissolving the AgZn precipitates in the bulk Zn matrix

    The Hsp70/90 cochaperone, Sti1, suppresses proteotoxicity by regulating spatial quality control of amyloid-like proteins

    No full text
    Conformational diseases are associated with the conversion of normal proteins into aggregation-prone toxic conformers with structures similar to that of β-amyloid. Spatial distribution of amyloid-like proteins into intracellular quality control centers can be beneficial, but cellular mechanisms for protective aggregation remain unclear. We used a high-copy suppressor screen in yeast to identify roles for the Hsp70 system in spatial organization of toxic polyglutamine-expanded Huntingtin (Huntingtin with 103Q glutamine stretch [Htt103Q]) into benign assemblies. Under toxic conditions, Htt103Q accumulates in unassembled states and speckled cytosolic foci. Subtle modulation of Sti1 activity reciprocally affects Htt toxicity and the packaging of Htt103Q into foci. Loss of Sti1 exacerbates Htt toxicity and hinders foci formation, whereas elevation of Sti1 suppresses Htt toxicity while organizing small Htt103Q foci into larger assemblies. Sti1 also suppresses cytotoxicity of the glutamine-rich yeast prion [RNQ+] while reorganizing speckled Rnq1–monomeric red fluorescent protein into distinct foci. Sti1-inducible foci are perinuclear and contain proteins that are bound by the amyloid indicator dye thioflavin-T. Sti1 is an Hsp70 cochaperone that regulates the spatial organization of amyloid-like proteins in the cytosol and thereby buffers proteotoxicity caused by amyloid-like proteins
    corecore