28 research outputs found

    Observations of the Perseids 2015 using the SPOSH cameras

    Get PDF
    We will organize a meteor campaign in Greece focusing on the observation of the meteor activity during this year’s maximum of the Perseids meteor shower. Double-station observations will be carried out from 10th until 14th of August using SPOSH cameras. During this period, we anticipate rates up to 100 Perseids per hour. The participation of graduate students during the observations and the data reduction will strengthen the educational aspect of the campaign

    The High Resolution Stereo Camera (HRSC) - Digital 3D-Image Acquisition, Photogrammetric Processing and Data Evaluation

    No full text
    Digital techniques replaced more and more the analogue photogrammetric analysis in daily work during the past years. The consequent way to complete the digital line is to per-form digital data acquisition. Since digital frame cameras for photogrammetric purposes will not be available within the next years, digital line scanners can fill this gap. At the Institute of Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. During the past two years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. The HRSC-A fulfils all requirements of a photogrammetric sensor. It is based on the along-track triple-stereo principle even using 9 CCD arrays and combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolu-tions depending on the camera control settings can be generated. A high-end GPS/INS system in combination with the multi-angle image information yields precise and high-frequent orientation data for the acquired image lines. In order to handle these data a completely automated photogrammetric processing system has been developed in cooperation between the Department for Photo-grammetry and Cartography of the Technical University of Berlin and the DLR. This system is capable to generate impressive multispectral 3D-image products of the HRSC-A data combined with accuracies in planimetry and height of better than 0.1 thousandth of the flight altitude, accuracies which have been confirmed by detailed investigations

    The High Resolution Stereo Camera (hrsc) - Digital 3d-Image Acquisition, Photogrammetric Processing And Data Evaluation

    No full text
    Digital techniques replaced more and more the analogue photogrammetric analysis in daily work during the past years. The consequent way to complete the digital line is to perform digital data acquisition. Since digital frame cameras for photogrammetric purposes will not be available within the next years, digital line scanners can fill this gap. At the Institute of Planetary Exploration of the German Aerospace Center (DLR) the High Resolution Stereo Camera (HRSC) has been designed for international missions to planet Mars. During the past two years an airborne version of this camera, the HRSC-A, has been successfully applied in many flight campaigns and in a variety of different applications. The HRSC-A fulfils all requirements of a photogrammetric sensor. It is based on the along-track triple-stereo principle even using 9 CCD arrays and combines 3D-capabilities and high resolution with multispectral data acquisition. Variable resolutions depending on the camera control settings can be..

    Tracking the Dark Side on a shoe-string budget

    No full text
    Meaningful SSA work on earth-orbiting satellites can be done on a shoe-string budget, with modest, off the shelf equipment. This has been shown by an informal group of self-funded Independent Space Observers (“ISO’s”) organized around the Seesat-L mailing list. Literally from their backyards, they track some 200 “classified” objects – objects that are not in the public orbital catalogues – using very simple equipment: from binoculars and stopwatch on the ‘old skool’ end, to DSLR’s or sensitive CCTV or CMOS/CCD cameras with fast photographic lenses and GPS time control on the sophisticated end. In this paper, a brief outline is provided on the techniques and equipment used by Seesat-L members and an example is given on how a new 'classified' launch is located and tracked, often within hours of launch. It is discussed why the whole concept of keeping the orbits of certain space assets “classified” is problematic: not only is it unrealistic, but it also goes against core notions of transparency and accountability regarding activities in space

    Space Surveillance Network Capabilities Evaluation Mission

    No full text
    The last years saw the diffusion of nano, pico and femto satellite missions launched by multiple entities thanks to the launch cost reduction and the electronics miniaturization. Such missions usually present limited capabilities in terms of precise orbit determination and extremely small radar and optical cross-sections. Often these missions carry one or more laser retro-reflectors for precise orbit determination but precise orbital measurements cannot be found in the literature. Miniaturized GNSS receivers are also often carried out but due to the experimental nature of such missions, the reliability and time span of such measurements is limited, leaving radar tracking as the only reliable tracking method. Due to the size of such satellites, the signal-to-noise ratio of such radar measurements is typically low and satellite identification (when launched on ride-share launches with a hundred or more other satellites) proves difficult and time-consuming.Being these very small satellites at the edge of the radar detection capabilities and not providing independent orbit determination means, their position uncertainty could be quite significant, leading to an increased orbit collision perceived risk.With this paper, we present a dedicated small satellite formation, made by multiple nano and pico satellites to evaluate the space surveillance network tracking capabilities and limits. The formation is made by a 3U CubeSat to be deployed as part of a rideshare launch. The satellite would be equipped with multiple means to track it, including a GNSS receiver, a set of multiple laser retro-reflectors, and LEDs for optical, laser, and radar tracking, allowing to characterize also different detection means in terms of capabilities. Such a satellite is made of two independent smaller satellites that can be un-docked in orbit upon command, reducing the satellite size and cross-section. This would push the detection limit for the space surveillance networks starting from an already acquired object and with limited clutter around it. Independent laser and GNSS tracking would allow ground measurement validation and validate position estimations. Further pico-satellites would be deployed by each sub-satellite to further push the detection limits and validate up to which size objects are trackable (still optically, radar and GNSS), thanks to miniaturized GNSS receivers already flown by several other missions.Sub-satellite separation is implemented upon command to ensure the process can be followed and executed at lower altitudes to limit the orbital lifetime of eventually hard-to-track small objects that could worsen the space debris problem. Ground characterization (in terms of optical and radar properties) will be performed, also including polarimetric measurements used to identify the separate satellites. All these technologies together would contribute to creating a unique tool to estimate the tracking capabilities of multiple instruments, specifically tailored for very small objects, the hardest to track, as compared to other characterization activities performed on much bigger objects

    Improving orbit prediction via thermospheric density calibration

    No full text
    The uncertainty on Thermospheric Mass Density (TMD), as derived from atmospheric models, can reach extremely high values. This effect is noteworthy in Low Earth Orbit (LEO), where atmospheric drag is the main perturbing force, as well as the most uncertain. LEO harbours almost 18,000 space objects at the end of 2021, around 60% of the total space debris population, and the rate of growth is increasing every year. Increasing the accuracy of TMD models, and thus the uncertainty characterisation, is important to ensure space environment sustainability in this congested and contested region. Accurate TMD modelling is a decisive factor in all space applications below the exopause, from LEO mission design to Space Situational Awareness (SSA) service provision: from conjunction assessment to re-entry and fragmentation analysis To enhance empirical TMD models, atmospheric density observations derived from satellite measurements are assimilated.This paper presents a novel approach for assimilating thermospheric density observations into atmospheric models to improve the accuracy of orbit predictions in short- to medium- term propagations. First, Global Navigation Satellite System (GNSS) derived density data from Swarm satellites are ingested from the publicly available Level 2 data products of the European Space Agency (ESA). In a second step, density data is assimilated into the empirical model NRMLSISE-00, using Principal Component Analysis (PCA) to decompose into the main temporal and spatial modes, providing useful physical insight into the main variables driving the model. Thirdly, the model is tested on several cases, whose data was not assimilated, such as LEO satellites that are well-tracked with GNSS-derived positions: Sentinel, and GRACE. The model is also tested with objects with less accurate reference trajectories, such as catalogued space debris in LEO. Finally, the orbits are propagated, using the improved drag model that includes the neutral density from the assimilation of the GNSS-derived observations into NLRMSISE-00. The accuracy of the method is assessed and compared to non-assimilated models. During the discussion of the results, other sources of uncertainty are analysed. To name a few, geomagnetic activity, solar radiation pressure coefficient, attitude knowledge, and spacecraft parameters such as mass, area, drag coefficient, and so on. The improvement on the state accuracy and uncertainty realism after a medium-term propagation is analysed and the application to catalogue maintenance discussed.<br/

    A system design for space-based space surveillance

    No full text
    This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro- satellite platform. The results have been produced in the frame of ESA’s "As sessment Study for Space Based Space Surveillance Demonstration Mission (Phase A) " performed by the Airbus DS consortium. Space Surveillance and Tracking is part of Space Situational Awareness (SSA) and covers the detection, tracking and cataloguing of spa ce debris and satellites. Derived SST services comprise a catalogue of these man-made objects, collision warning, detection and characterisation of in-orbit fragmentations, sub-catalogue debris characterisation, etc. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well - designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond - LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing and fusion, etc.) until the final products can be offered to the users. The presented SBSS system concept takes the ESA SST System Requirements (derived within the ESA SSA Preparatory Program) into account and aims at fulfilling some of the SST core requirements in a stand-alone manner. The evaluation of the concept has shown that an according solution can be implemented with low technological effort and risk. The paper presents details of the system concept, candidate micro - satellite platforms, the observation strategy and the results of performance simulations for GEO coverage and cataloguing accurac

    Space-based space surveillance and tracking demonstrator: mission and system design

    No full text
    This paper presents the capabilities of a Space-Based Space Surveillance (SBSS) demonstration mission for Space Surveillance and Tracking (SST) based on a micro-satellite platform. The results have been produced in the frame of ESA’s "Assessment Study for Space Based Space Surveillance Demonstration Mission" performed by the Airbus Defence and Space consortium. The assessment of SBSS in an SST system architecture has shown that both an operational SBSS and also already a well- designed space-based demonstrator can provide substantial performance in terms of surveillance and tracking of beyond-LEO objects. Especially the early deployment of a demonstrator, possible by using standard equipment, could boost initial operating capability and create a self-maintained object catalogue. Furthermore, unique statistical information about small-size LEO debris (mm size) can be collected in-situ. Unlike classical technology demonstration missions, the primary goal is the demonstration and optimisation of the functional elements in a complex end-to-end chain (mission planning, observation strategies, data acquisition, processing, etc.) until the final products can be offered to the users and with low technological effort and risk. The SBSS system concept takes the ESA SST System Requirements into account and aims at fulfilling SST core requirements in a stand-alone manner. Additionally, requirements for detection and characterisation of small-sizedLEO debris are considered. The paper presents details of the system concept, candidate micro-satellite platforms, the instrument design and the operational modes. Note that the detailed results of performance simulations for space debris coverage and cataloguing accuracy are presented in a separate paper “Capability of a Space-based Space Surveillance System to Detect and Track Objects in GEO, MEO and LEO Orbits” by J. Silha (AIUB) et al., IAC-14, A6, 1.1x25640

    Capability of a space-based space surveillance system to detect and track objects in GEO, MEO and LEO orbits

    No full text
    In this paper we present the results from the coverage and the orbit determination accuracy simulations performed within the recently completed ESA study “Assessment Study for Space Based Space Surveillance (SBSS) Demonstration System” (Airbus Defence and Space consortium). This study consisted in investigating the capability of a space based optical sensor (SBSS) orbiting in low Earth orbit (LEO) to detect and track objects in GEO (geosynchronous orbit), MEO (medium Earth orbit) and LEO and to determinate and improve initial orbits from such observations. Space based systems may achieve better observation conditions than ground based sensors in terms of astrometric accuracy, detection coverage, and timeliness. The primary observation mode of the proposed SBSS demonstrator is GEO surveillance, i.e. the systematic search and detection of unknown and known objects. GEO orbits are specific and unique orbits from dynamical point of view. A space-based sensor may scan the whole GEO ring within one sidereal day if the orbit and pointing directions are chosen properly. For an efficient survey, our goal was to develop a leak-proof GEO fence strategy. Collaterally, we show that also MEO, LEO and other (GTO,Molniya, etc.) objects would be possible to observe by the system and for a considerable number of LEO objects to down to size of 1 cm we can obtain meaningful statistical data for improvement and validation of space debris environment model
    corecore