360 research outputs found

    From boundary to bulk in logarithmic CFT

    Full text link
    The analogue of the charge-conjugation modular invariant for rational logarithmic conformal field theories is constructed. This is done by reconstructing the bulk spectrum from a simple boundary condition (the analogue of the Cardy `identity brane'). We apply the general method to the c_1,p triplet models and reproduce the previously known bulk theory for p=2 at c=-2. For general p we verify that the resulting partition functions are modular invariant. We also construct the complete set of 2p boundary states, and confirm that the identity brane from which we started indeed exists. As a by-product we obtain a logarithmic version of the Verlinde formula for the c_1,p triplet models.Comment: 35 pages, 2 figures; v2: minor corrections, version to appear in J.Phys.

    The logarithmic triplet theory with boundary

    Get PDF
    The boundary theory for the c=-2 triplet model is investigated in detail. In particular, we show that there are four different boundary conditions that preserve the triplet algebra, and check the consistency of the corresponding boundary operators by constructing their OPE coefficients explicitly. We also compute the correlation functions of two bulk fields in the presence of a boundary, and verify that they are consistent with factorisation.Comment: 43 pages, LaTeX; v2: references added, typos corrected, footnote 4 adde

    Infinite Symmetry in the Fractional Quantum Hall Effect

    Full text link
    We have generalized recent results of Cappelli, Trugenberger and Zemba on the integer quantum Hall effect constructing explicitly a W1+{\cal W}_{1+\infty} for the fractional quantum Hall effect such that the negative modes annihilate the Laughlin wave functions. This generalization has a nice interpretation in Jain's composite fermion theory. Furthermore, for these models we have calculated the wave functions of the edge excitations viewing them as area preserving deformations of an incompressible quantum droplet, and have shown that the W1+{\cal W}_{1+\infty} is the underlying symmetry of the edge excitations in the fractional quantum Hall effect. Finally, we have applied this method to more general wave functions.Comment: 15pp. LaTeX, BONN-HE-93-2

    Bits and Pieces in Logarithmic Conformal Field Theory

    Full text link
    These are notes of my lectures held at the first School & Workshop on Logarithmic Conformal Field Theory and its Applications, September 2001 in Tehran, Iran. These notes cover only selected parts of the by now quite extensive knowledge on logarithmic conformal field theories. In particular, I discuss the proper generalization of null vectors towards the logarithmic case, and how these can be used to compute correlation functions. My other main topic is modular invariance, where I discuss the problem of the generalization of characters in the case of indecomposable representations, a proposal for a Verlinde formula for fusion rules and identities relating the partition functions of logarithmic conformal field theories to such of well known ordinary conformal field theories. These two main topics are complemented by some remarks on ghost systems, the Haldane-Rezayi fractional quantum Hall state, and the relation of these two to the logarithmic c=-2 theory.Comment: 91 pages, notes of lectures delivered at the first School and Workshop on Logarithmic Conformal Field Theory and its Applications, Tehran, September 2001. Amendments in Introductio

    Generalized twisted modules associated to general automorphisms of a vertex operator algebra

    Full text link
    We introduce a notion of strongly C^{\times}-graded, or equivalently, C/Z-graded generalized g-twisted V-module associated to an automorphism g, not necessarily of finite order, of a vertex operator algebra. We also introduce a notion of strongly C-graded generalized g-twisted V-module if V admits an additional C-grading compatible with g. Let V=\coprod_{n\in \Z}V_{(n)} be a vertex operator algebra such that V_{(0)}=\C\one and V_{(n)}=0 for n<0 and let u be an element of V of weight 1 such that L(1)u=0. Then the exponential of 2\pi \sqrt{-1} Res_{x} Y(u, x) is an automorphism g_{u} of V. In this case, a strongly C-graded generalized g_{u}-twisted V-module is constructed from a strongly C-graded generalized V-module with a compatible action of g_{u} by modifying the vertex operator map for the generalized V-module using the exponential of the negative-power part of the vertex operator Y(u, x). In particular, we give examples of such generalized twisted modules associated to the exponentials of some screening operators on certain vertex operator algebras related to the triplet W-algebras. An important feature is that we have to work with generalized (twisted) V-modules which are doubly graded by the group C/Z or C and by generalized eigenspaces (not just eigenspaces) for L(0), and the twisted vertex operators in general involve the logarithm of the formal variable.Comment: Final version to appear in Comm. Math. Phys. 38 pages. References on triplet W-algebras added, misprints corrected, and expositions revise

    Extended chiral algebras and the emergence of SU(2) quantum numbers in the Coulomb gas

    Get PDF
    We study a set of chiral symmetries contained in degenerate operators beyond the `minimal' sector of the c(p,q) models. For the operators h_{(2j+2)q-1,1}=h_{1,(2j+2)p-1} at conformal weight [ (j+1)p-1 ][ (j+1)q -1 ], for every 2j \in N, we find 2j+1 chiral operators which have quantum numbers of a spin j representation of SU(2). We give a free-field construction of these operators which makes this structure explicit and allows their OPEs to be calculated directly without any use of screening charges. The first non-trivial chiral field in this series, at j=1/2, is a fermionic or para-fermionic doublet. The three chiral bosonic fields, at j=1, generate a closed W-algebra and we calculate the vacuum character of these triplet models.Comment: 23 pages Late

    A differential U-module algebra for U=U_q sl(2) at an even root of unity

    Full text link
    We show that the full matrix algebra Mat_p(C) is a U-module algebra for U = U_q sl(2), a 2p^3-dimensional quantum sl(2) group at the 2p-th root of unity. Mat_p(C) decomposes into a direct sum of projective U-modules P^+_n with all odd n, 1<=n<=p. In terms of generators and relations, this U-module algebra is described as the algebra of q-differential operators "in one variable" with the relations D z = q - q^{-1} + q^{-2} z D and z^p = D^p = 0. These relations define a "parafermionic" statistics that generalizes the fermionic commutation relations. By the Kazhdan--Lusztig duality, it is to be realized in a manifestly quantum-group-symmetric description of (p,1) logarithmic conformal field models. We extend the Kazhdan--Lusztig duality between U and the (p,1) logarithmic models by constructing a quantum de Rham complex of the new U-module algebra.Comment: 29 pages, amsart++, xypics. V3: The differential U-module algebra was claimed quantum commutative erroneously. This is now corrected, the other results unaffecte

    Nonlinear Dynamics of Parity-Even Tricritical Gravity in Three and Four Dimensions

    Full text link
    Recently proposed "multicritical" higher-derivative gravities in Anti de Sitter space carry logarithmic representations of the Anti de Sitter isometry group. While generically non-unitary already at the quadratic, free-theory level, in special cases these theories admit a unitary subspace. The simplest example of such behavior is "tricritical" gravity. In this paper, we extend the study of parity-even tricritical gravity in d = 3, 4 to the first nonlinear order. We show that the would-be unitary subspace suffers from a linearization instability and is absent in the full non-linear theory.Comment: 22 pages; v2: references added, published versio

    Topologically Massive Gravity and the AdS/CFT Correspondence

    Full text link
    We set up the AdS/CFT correspondence for topologically massive gravity (TMG) in three dimensions. The first step in this procedure is to determine the appropriate fall off conditions at infinity. These cannot be fixed a priori as they depend on the bulk theory under consideration and are derived by solving asymptotically the non-linear field equations. We discuss in detail the asymptotic structure of the field equations for TMG, showing that it contains leading and subleading logarithms, determine the map between bulk fields and CFT operators, obtain the appropriate counterterms needed for holographic renormalization and compute holographically one- and two-point functions at and away from the 'chiral point' (mu = 1). The 2-point functions at the chiral point are those of a logarithmic CFT (LCFT) with c_L = 0, c_R = 3l/G_N and b = -3l/G_N, where b is a parameter characterizing different c = 0 LCFTs. The bulk correlators away from the chiral point (mu \neq 1) smoothly limit to the LCFT ones as mu \to 1. Away from the chiral point, the CFT contains a state of negative norm and the expectation value of the energy momentum tensor in that state is also negative, reflecting a corresponding bulk instability due to negative energy modes.Comment: 54 pages, v2: added comments and reference
    corecore