2 research outputs found
In-situ strain tuning of the Dirac surface states in Bi2Se3 films
Elastic strain has the potential for a controlled manipulation of the band
gap and spin-polarized Dirac states of topological materials, which can lead to
pseudo-magnetic-field effects, helical flat bands and topological phase
transitions. However, practical realization of these exotic phenomena is
challenging and yet to be achieved. Here, we show that the Dirac surface states
of the topological insulator Bi2Se3 can be reversibly tuned by an externally
applied elastic strain. Performing in-situ x-ray diffraction and in-situ
angle-resolved photoemission spectroscopy measurements during tensile testing
of epitaxial Bi2Se3 films bonded onto a flexible substrate, we demonstrate
elastic strains of up to 2.1% and quantify the resulting reversible changes in
the topological surface state. Our study establishes the functional
relationship between the lattice and electronic structures of Bi2Se3 and, more
generally, demonstrates a new route toward momentum-resolved mapping of
strain-induced band structure changes