21 research outputs found

    Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Get PDF
    Evidence suggests that recombinant human bone morphogenetic protein 2 (rhBMP-2) increases the mechanical integrity of callus tissue during bone healing. This effect may be either explained by an increase of callus formation or a modification of the trabecular microarchitecture. Therefore the purpose of the study was to evaluate the potential benefit of rhBMP-2 on the trabecular microarchitecture and on multidirectional callus stiffness. Further we asked, whether microarchitecture changes correlate with optimized callus stiffness. In this study a tibial distraction osteogenesis (DO) model in 12 sheep was used to determine, whether percutaneous injection of rhBMP-2 into the distraction zone influences the microarchitecture of the bone regenerate. After a latency period of 4 days, the tibiae were distracted at a rate of 1.25 mm/day over a period of 20 days, resulting in total lengthening of 25 mm. The operated limbs were randomly assigned to one treatment groups and one control group: (A) triple injection of rhBMP-2 (4 mg rhBMP-2/injection) and (B) no injection. The tibiae were harvested after 74 days and scanned by µCT (90 µm/voxel). In addition, we conducted a multidirectional mechanical testing of the tibiae by using a material testing system to assess the multidirectional strength. The distraction zones were tested for torsional stiffness and bending stiffness antero-posterior (AP) and medio-lateral (ML) direction, compression strength and maximum axial torsion. Statistical analysis was performed using multivariate analysis of variance (ANOVA) followed by student's t-test and Regression analysis using power functions with a significance level of P<0.05. Triple injections of rhBMP-2 induced significant changes in the trabecular architecture of the regenerate compared with the control: increased trabecular number (Tb.N.) (treatment group 1.73 mm/1 vs. control group 1.2 mm/1), increased cortical bone volume fraction (BV/TV) (treatment group 0.68 vs. control group 0.47), and decreased trabecular separation (Tb.Sp.) (treatment group 0.18 mm vs. control group 0.43 mm)

    Backside Wear Analysis of Retrieved Acetabular Liners with a Press-Fit Locking Mechanism in Comparison to Wear Simulation In Vitro

    Get PDF
    Backside wear due to micromotion and poor conformity between the liner and its titanium alloy shell may contribute to the high rates of retroacetabular osteolysis and consequent aseptic loosening. The purpose of our study was to understand the wear process on the backside of polyethylene liners from two acetabular cup systems, whose locking mechanism is based on a press-fit cone in combination with a rough titanium conical inner surface on the fixation area. A direct comparison between in vitro wear simulator tests (equivalent to 3 years of use) and retrieved liners (average 13.1 months in situ) was done in order to evaluate the backside wear characteristics and behavior of these systems. Similar wear scores between in vitro tested and retrieved liners were observed. The results showed that this locking mechanism did not significantly produce wear marks at the backside of the polyethylene liners due to micromotion. In all the analyzed liners, the most common wear modes observed were small scratches at the cranial fixation zone directly below the rough titanium inner surface of the shell. It was concluded that most of the wear marks were produced during the insertion and removal of the liner, rather than during its time in situ

    Preliminary results in anterior cervical discectomy and fusion with an experimental bioabsorbable cage - clinical and radiological findings in an ovine animal model

    Get PDF
    Background: Bioabsorbable implants are not widely used in spine surgery. This study investigated the clinical and radiological findings after anterior cervical discectomy and fusion (ACDF) in an ovine animal model with an experimental bioabsorbable cage consisting of magnesium and polymer (poly-ε-caprolactone, PCL) in comparison to a tricortical bone graft as the gold standard procedure. Materials and Methods: 24 full-grown sheep had ACDF of C3/4 and C5/6 with an experimental bioabsorbable implant (magnesium and PCL) in one level and an autologous tricortical bone graft in the second level. The sheep were divided into 4 groups (6 sheep each). After 3, 6, 12, or 24 weeks postoperatively, the cervical spines were harvested and conventional x-rays of each operated segment were conducted. The progress of interbody fusion was classified according to a three-point scoring system. Results: There were no operation related complications except for one intraoperative fracture of the anterior superior iliac spine and two cases of screw loosening and sinking, respectively. In particular, no vascular, neurologic, wound healing or infectious problems were observed. According to the time of follow-up, both interbody fusion devices showed similar behaviour with increasing intervertebral osseointegration and complete arthrodesis in 10 of 12 (83.3%) motion segments after 24 weeks. Conclusions: The bioabsorbable magnesium-PCL cage used in this experimental animal study showed clinically no signs of incompatibility such as infectious or wound healing problems. The radiographic results regarding the osseointegration are comparable between the cage and the bone graft group.Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF)German Federal Ministry of Economy and Technology (BMWi

    Changes in strain patterns after implantation of a short stem with metaphyseal anchorage compared to a standard stem: an experimental study in synthetic bone

    Get PDF
    Short stem hip arthroplasties with predominantly metaphyseal fixation, such as the METHA® stem (Aesculap, Tuttlingen, Germany), are recommended because they are presumed to allow a more physiologic load transfer and thus a reduction of stress-shielding. However, the hypothesized metaphyseal anchorage associated with the aforementioned benefits still needs to be verified. Therefore, the METHA short stem and the Bicontact® standard stem (Aesculap, Tuttlingen, Germany) were tested biomechanically in synthetic femora while strain gauges monitored their corresponding strain patterns. For the METHA stem, the strains in all tested locations including the region of the calcar (87% of the non-implanted femur) were similar to conditions of synthetic bone without implanted stem. The Bicontact stem showed approximately the level of strain of the non-implanted femur on the lateral and medial aspect in the proximal diaphysis of the femur. On the anterior and posterior aspect of the proximal metaphysis the strains reached averages of 78% and 87% of the non-implanted femur, respectively. This study revealed primary metaphyseal anchorage of the METHA short stem, as opposed to a metaphyseal-diaphyseal anchorage of the Bicontact stem

    ERRATUM: Repetitive recombinant human bone morphogenetic protein 2 injections improve the callus microarchitecture and mechanical stiffness in a sheep model of distraction osteogenesis

    Get PDF
    Due to a technical error, Dr. Marc-Frederic Pastor was omitted from the author list of this article. The correct author details appear above.<br /

    Is a Femoro-Acetabular Impingement Type Cam Predictable after Slipped Capital Femoral Epiphysis?

    No full text
    (1) Background: Previous studies have proven a high incidence of a femoro-acetabular impingement (FAI) type cam in patients sustaining a slipped capital femoral epiphysis (SCFE). Thus, the current study analyzed, if a cam deformity is predictable after SCFE treatment; (2) Methods: 113 cases of SCFE were treated between 1 January 2005 and 31 December 2017. The radiological assessment included the slip angle after surgery (referenced to the femoral neck (epiphyseal tilt) and shaft axis as Southwick angle) and the last available lateral center edge angle (LCEA), the acetabular- and alpha angle. A correlation was performed between these parameters and the last alpha angle to predict a FAI type cam; (3) Results: After a mean follow-up of 4.3 years (±1.9; 2.0–11.2), 48.5% of the patients showed a FAI type cam and 43.2% a dysplasia on the affected side. The correlation between the epiphyseal tilt and alpha angle was statically significant (p = 0.017) with a medium effect size of 0.28; (4) Conclusions: The postoperative posterior epiphyseal tilt was predictive factor to determine the alpha angle. However, the cut-off value of the slip angle was 16.8° for a later occurrence of a FAI type cam indicating a small range of acceptable deviations from the anatomical position for SCFE reconstruction

    What Is the Impact of a CAM Impingement on the Gait Cycle in Patients with Progressive Osteoarthritis of the Hip?

    No full text
    (1) Background: The femoroacetabular impingement (FAI) type cam leads to a conflict between the acetabular rim and a bony thickening of the femoral neck junction. While maximal excursions in flexion, adduction and internal rotation provoke pain, the aim of this study was to analyze if a cam morphology shows an impact on gait pattern. (2) Methods: Fifty-five patients with end-stage hip osteoarthritis performed gait analysis before hip replacement as well as three, six and 12 months postoperatively. Thirty-three (60%) of them presented an FAI type cam. An ANOVA was used to compare the hip angles in sagittal, frontal and transversal planes between patients with a FAI type cam (group “+cam”) and without (group “−cam”). (3) Results: Before surgery the patients of the +cam-group showed a tendency towards a reduced flexion and internal rotation at the heel strike (p &gt; 0.05). Over time, the differences were adjusted by total hip arthroplasty. (4) Conclusions: We did not find any differences in the gait analysis of patients with a FAI type cam compared to patients without

    The Influence of Tribological Pairings and Other Factors on Migration Patterns of Short Stems in Total Hip Arthroplasty

    No full text
    Over the last decade, the number of short stem total hip arthroplasty procedures has increased. Along with the possible benefits associated with short stems is a smaller implant-bone contact surface, which may have a negative influence on primary stability and impair osseointegration. Previous studies observed migration of short stems, especially within the first three months. The variables that influence migration in short stem hip implants remain unknown. Therefore, the purpose of this study was to associate the migration of short stems with its possible influencing variables. Migration data from two different short stem studies were retrospectively analyzed. Migration within the first two postoperative years was determined by model-based Roentgen stereophotogrammetric analysis. Migration was correlated to bearing couple, type and size of stem, size of acetabular cup, and age, gender, weight, and height of patients using a multiple factor analysis. Eigenvalue analysis explained 80.7% of the overall variance for the first three dimensions. The four most dominant variables in the first dimension were weight, stem size, acetabular cup size, and patient height (correlations of 0.81, 0.80, 0.71, and 0.70, resp.). None of the analyzed parameters (bearing couple, type and size of stem, size of acetabular cup, and age, gender, weight, and height of patients) affected the migration pattern of short stem THA with primary metaphyseal fixation
    corecore