32 research outputs found

    Charge transport modulation by a redox supramolecular spin-filtering chiral crystal

    Full text link
    The chirality induced spin selectivity (CISS) effect is a fascinating phenomena correlating molecular structure with electron spin-polarisation in excited state measurements. Experimental procedures to quantify the spin-filtering magnitude relies generally on averaging data sets, especially those from magnetic field dependent conductive-AFM. We investigate the underlying observed disorder in the IV spectra and the origin of spikes superimposed. We demonstrate and explain that a dynamic, voltage sweep rate dependent, phenomena can give rise to complex IV curves for chiral crystals of coronene bisimide. The redox group, able to capture localized charge states, acts as an impurity state interfering with a continuum, giving rise to Fano resonances. We introduce a novel mechanism for the dynamic transport which might also provide insight into the role of spin-polarization. Crucially, interference between charge localisation and delocalisation during transport may be important properties into understanding the CISS phenomena

    Beyond domain alignment: Revealing the effect of intrinsic magnetic order on electrochemical water splitting

    Full text link
    To reach a long term viable green hydrogen economy, rational design of active oxygen evolution reaction (OER) catalysts is critical. An important hurdle in this reaction originates from the fact that the reactants are singlet molecules, whereas the oxygen molecule has a triplet ground state with parallel spin alignment, implying that magnetic order in the catalyst is essential. Accordingly, multiple experimentalists reported a positive effect of external magnetic fields on OER activity of ferromagnetic catalysts. However, it remains a challenge to investigate the influence of the intrinsic magnetic order on catalytic activity. Here, we tuned the intrinsic magnetic order of epitaxial La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} thin film model catalysts from ferro- to paramagnetic by changing the temperature in-situ during water electrolysis. Using this strategy, we show that ferromagnetic ordering below the Curie temperature enhances OER activity. Moreover, we show a slight current density enhancement upon application of an external magnetic field and find that the dependence of magnetic field direction correlates with the magnetic anisotropy in the catalyst film. Our work thus suggests that both the intrinsic magnetic order in La0.67_{0.67}Sr0.33_{0.33}MnO3_{3} films and magnetic domain alignment increase their catalytic activity. We observe no long-range magnetic order at the catalytic surface, implying that the OER enhancement is connected to the magnetic order of the bulk catalyst. Combining the effects found with existing literature, we propose a unifying picture for the spin-polarized enhancement in magnetic oxide catalysts.Comment: The following article will be submitted to Applied Physics Reviews. Main text (incl. references) 19 pages, 8 figures. Supplementary text 9 pages, 13 figure

    The effect of intrinsic magnetic order on electrochemical water splitting

    Get PDF
    To reach a long term viable green hydrogen economy, rational design of active oxygen evolution reaction (OER) catalysts is critical. An important hurdle in this reaction originates from the fact that the reactants are singlet molecules, whereas the oxygen molecule has a triplet ground state with parallel spin alignment, implying that magnetic order in the catalyst is essential. Accordingly, multiple experimentalists reported a positive effect of external magnetic fields on OER activity of ferromagnetic catalysts. However, it remains a challenge to investigate the influence of the intrinsic magnetic order on catalytic activity. Here, we tuned the intrinsic magnetic order of epitaxial La0.67Sr0.33MnO3 thin film model catalysts from ferro- to paramagnetic by changing the temperature in situ during water electrolysis. Using this strategy, we show that ferromagnetic ordering below the Curie temperature enhances OER activity. Moreover, we show a slight current density enhancement upon application of an external magnetic field and find that the dependence of magnetic field direction correlates with the magnetic anisotropy in the catalyst film. Our work, thus, suggests that both the intrinsic magnetic order in La0.67Sr0.33MnO3 films and magnetic domain alignment increase their catalytic activity. We observe no long-range magnetic order at the catalytic surface, implying that the OER enhancement is connected to the magnetic order of the bulk catalyst. Combining the effects found with existing literature, we propose a unifying picture for the spin-polarized enhancement in magnetic oxide catalysts.</p

    Origin of room-temperature ferromagnetism in hydrogenated epitaxial graphene on silicon carbide

    No full text
    The discovery of room-temperature ferromagnetism of hydrogenated epitaxial graphene on silicon carbide challenges for a fundamental understanding of this long-range phenomenon. Carbon allotropes with their dispersive electron states at the Fermi level and a small spin-orbit coupling are not an obvious candidate for ferromagnetism. Here we show that the origin of ferromagnetism in hydrogenated epitaxial graphene with a relatively high Curie temperature (>300 K) lies in the formation of curved specific carbon site regions in the graphene layer, induced by the underlying Si-dangling bonds and by the hydrogen bonding. Hydrogen adsorption is therefore more favourable at only one sublattice site, resulting in a localized state at the Fermi energy that can be attributed to a pseudo-Landau level splitting. This n = 0 level forms a spin-polarized narrow band at the Fermi energy leading to a high Curie temperature and larger magnetic moment can be achieved due to the presence of Si dangling bonds underneath the hydrogenated graphene layer

    Origin of Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene on Silicon Carbide

    Get PDF
    The discovery of room-temperature ferromagnetism of hydrogenated epitaxial graphene on silicon carbide challenges for a fundamental understanding of this long-range phenomenon. Carbon allotropes with their dispersive electron states at the Fermi level and a small spin-orbit coupling are not an obvious candidate for ferromagnetism. Here we show that the origin of ferromagnetism in hydrogenated epitaxial graphene with a relatively high Curie temperature (&gt;300 K) lies in the formation of curved specific carbon site regions in the graphene layer, induced by the underlying Si-dangling bonds and by the hydrogen bonding. Hydrogen adsorption is therefore more favourable at only one sublattice site, resulting in a localized state at the Fermi energy that can be attributed to a pseudo-Landau level splitting. This n = 0 level forms a spin-polarized narrow band at the Fermi energy leading to a high Curie temperature and larger magnetic moment can be achieved due to the presence of Si dangling bonds underneath the hydrogenated graphene layer

    Origin of room-temperature ferromagnetism in hydrogenated epitaxial graphene on silicon carbide

    No full text
    \u3cp\u3eThe discovery of room-temperature ferromagnetism of hydrogenated epitaxial graphene on silicon carbide challenges for a fundamental understanding of this long-range phenomenon. Carbon allotropes with their dispersive electron states at the Fermi level and a small spin-orbit coupling are not an obvious candidate for ferromagnetism. Here we show that the origin of ferromagnetism in hydrogenated epitaxial graphene with a relatively high Curie temperature (&gt;300 K) lies in the formation of curved specific carbon site regions in the graphene layer, induced by the underlying Si-dangling bonds and by the hydrogen bonding. Hydrogen adsorption is therefore more favourable at only one sublattice site, resulting in a localized state at the Fermi energy that can be attributed to a pseudo-Landau level splitting. This n = 0 level forms a spin-polarized narrow band at the Fermi energy leading to a high Curie temperature and larger magnetic moment can be achieved due to the presence of Si dangling bonds underneath the hydrogenated graphene layer.\u3c/p\u3

    Effect of local doping on the electronic properties of epitaxial graphene on SiC

    No full text
    Graphene grown on silicon carbide (SiC) is a promising material for high speed electronic devices. However, for possible future applications it is important to understand the electron properties of this material and how it is affected by the interaction with the SiC interface. Here we report an atomically resolved scanning tunneling microscopy and spectroscopy study of local structural and electronic properties of epitaxial graphene. Sharp localized states from the graphene/SiC(0001) interface have been found to strongly influence the electronic properties of the first graphene layer, causing local doping of graphene layer. The disordered high electron density states have originated from the underlying carbon-rich interface layer whose structure is discussed. Scanning tunneling microscopy images of a first graphene layer on SiC(0001) taken at bias voltage - 500 and 500mV (5×5 nm 2). Red circles and blue crosses indicate that localized states in the filled and empty electron states belonging to the underlying interface layer are located at different positions

    Modeling realistic tip structures : scanning tunneling microscopy of NO adsorption on Rh(111)

    Get PDF
    We have performed a joint experimental and theoretical scanning tunneling microscopy (STM) study of NO adsorbed on Rh(111). The experimental STM images showed a strong sensitivity to the tip conditions that could be altered by dipping the tip into the sample or by application of voltage pulses. Only via STM simulations performed over an exhaustive range of tip-apex terminations, including several contaminants in different adsorption geometries and with different spatial orientations, we have been able to reproduce the rich variety of measured images. From the analysis, we are able to infer a realistic structural model for the ultimate tip-apex structure involving apex geometries considerably more complex than those typically employed in STM modeling

    Surface phonon scattering in epitaxial graphene on 6H-SiC

    Get PDF
    We show the growth of high-quality epitaxial graphene on 6H-SiC with Raman signatures comparable to exfoliated flakes. We ascribe the remaining low-quality transport properties to the strong electron-phonon coupling to two low-energy phonon modes at 70 and 16 meV. The coupling of these modes is enhanced by the defects present in the SiC substrate and buffer layer. Measurements of the mobility versus carrier concentration show a square-root dependence, corroborating the importance of surface phonon scattering in the limited mobility of graphene on SiC
    corecore