138 research outputs found
Non-equilibrium Entanglement and Noise in Coupled Qubits
We study charge entanglement in two Coulomb-coupled double quantum dots in
thermal equilibrium and under stationary non-equilibrium transport conditions.
In the transport regime, the entanglement exhibits a clear switching threshold
and various limits due to suppression of tunneling by Quantum Zeno localisation
or by an interaction induced energy gap. We also calculate quantum noise
spectra and discuss the inter-dot current correlation as an indicator of the
entanglement in transport experiments.Comment: 4 pages, 4 figure
The influence of charge detection on counting statistics
We consider the counting statistics of electron transport through a double
quantum dot with special emphasis on the dephasing induced by a nearby charge
detector. The double dot is embedded in a dissipative enviroment, and the
presence of electrons on the double dot is detected with a nearby quantum point
contact. Charge transport through the double dot is governed by a non-Markovian
generalized master equation. We describe how the cumulants of the current can
be obtained for such problems, and investigate the difference between the
dephasing mechanisms induced by the quantum point contact and the coupling to
the external heat bath. Finally, we consider various open questions of
relevance to future research.Comment: 15 pages, 2 figures, Contribution to 5-th International Conference on
Unsolved Problems on Noise, Lyon, France, June 2-6, 200
Impact of eutrophication on the life cycle, population dynamics and production of Ampithoe valida (Amphipoda) along an estuarine spatial gradient (Mondego estuary, Portugal)
The life cycle, population dynamics and production of Ampithoe valida was studied from an intertidal mudflat in central Portugal, close to the northern limit of the species¹ distributional range in the eastern Atlantic Ocean. Sampling was carried out in eutrophicated areas, where macroalgae blooms of Enteromorpha spp. occur usually from January to early summer, and also in non-eutrophicated areas, with Zostera noltii meadows. A. valida showed a contagious distribution and the population density clearly changed during the study period along the eutrophication gradient. No migratory patterns were detected between the estuary and the sea, but migrations inside the estuary might have occurred. Females were morphologically recognisable at smaller sizes than males. Females reached sexual maturity before males, but males may live slightly longer than females. Females are iteroparous, producing 2, perhaps 3, broods. A 2-generation life cycle involving a short-lived (7 mo), fast-growing summer generation and a longer-lived (9 mo), slower-growing generation that overwinters is hypothesised. Ovigerous females were present year-round. Eggs, depending on the season, increase differently in volume during marsupial development. No correlations were found between fecundity (number of eggs) and the size of females. Along the eutrophication gradient no differences were found regarding the biology of the species. Besides these features, differences were observed between eutrophicated and non-eutrophicated areas with regard to productivity. Growth production (P) of A. valida in the most eutrophicated area was 0.098 g m-2 18 mo-1 and 0.64 g m-2 18 mo-1 in the Z. noltii meadows. P/B- and E/B- ratios (where E is the elimination production and B- is the average population biomass) ranged from 1.42 and 3.06 in the most eutrophicated area to 5.98 and 12.41 in the Z. noltii beds. To a certain extent, the increase of macroalgae biomass may favour A. valida populations, but extensive blooms affecting the whole area of distribution of this species will determine its disappearanc
Phosphorus speciation and availability in intertidal sediments of a temperate estuary: relation to eutrophication and annual P-fluxes
For a better understanding of the phosphorus dynamics and bioavailability in temperate climates, sequential chemical extraction techniques were used to study sediment P-pools distribution and relative importance in a eutrophicated estuary.http://www.sciencedirect.com/science/article/B6WDV-4D34K0B-4/1/81664d8a2942d81fa74d7a11d696e2b
Electron Waiting Times in Mesoscopic Conductors
Electron transport in mesoscopic conductors has traditionally involved
investigations of the mean current and the fluctuations of the current. A
complementary view on charge transport is provided by the distribution of
waiting times between charge carriers, but a proper theoretical framework for
coherent electronic systems has so far been lacking. Here we develop a quantum
theory of electron waiting times in mesoscopic conductors expressed by a
compact determinant formula. We illustrate our methodology by calculating the
waiting time distribution for a quantum point contact and find a cross-over
from Wigner-Dyson statistics at full transmission to Poisson statistics close
to pinch-off. Even when the low-frequency transport is noiseless, the electrons
are not equally spaced in time due to their inherent wave nature. We discuss
the implications for renewal theory in mesoscopic systems and point out several
analogies with energy level statistics and random matrix theory.Comment: 4+ pages, 3 figure
Measurement of finite-frequency current statistics in a single-electron transistor
Electron transport in nano-scale structures is strongly influenced by the
Coulomb interaction which gives rise to correlations in the stream of charges
and leaves clear fingerprints in the fluctuations of the electrical current. A
complete understanding of the underlying physical processes requires
measurements of the electrical fluctuations on all time and frequency scales,
but experiments have so far been restricted to fixed frequency ranges as
broadband detection of current fluctuations is an inherently difficult
experimental procedure. Here we demonstrate that the electrical fluctuations in
a single electron transistor (SET) can be accurately measured on all relevant
frequencies using a nearby quantum point contact for on-chip real-time
detection of the current pulses in the SET. We have directly measured the
frequency-dependent current statistics and hereby fully characterized the
fundamental tunneling processes in the SET. Our experiment paves the way for
future investigations of interaction and coherence induced correlation effects
in quantum transport.Comment: 7 pages, 3 figures, published in Nature Communications (open access
Rights Myopia in Child Welfare
For decades, legal scholars have debated the proper balance of parents\u27 rights and children\u27s rights in the child welfare system. This Article argues that the debate mistakenly privileges rights. Neither parents\u27 rights nor children\u27s rights serve families well because, as implemented, a solely rights-based model of child welfare does not protect the interests of parents or children. Additionally, even if well-implemented, the model still would not serve parents or children because it obscures the important role of poverty in child abuse and neglect and fosters conflict rather than collaboration between the state and families. In lieu of a solely rights-based model, this Article proposes a problem-solving model for child welfare and explores one embodiment of such a model, family group conferencing. This Article concludes that a problem-solving model holds significant potential to address many of the profound theoretical and practical shortcomings of the current child welfare system
Factorial cumulants reveal interactions in counting statistics
Full counting statistics concerns the stochastic transport of electrons in
mesoscopic structures. Recently it has been shown that the charge transport
statistics for non-interacting electrons in a two-terminal system is always
generalized binomial: it can be decomposed into independent single-particle
events and the zeros of the generating function are real and negative. Here we
investigate how the zeros of the generating function move into the complex
plane due to interactions and demonstrate that the positions of the zeros can
be detected using high-order factorial cumulants. As an illustrative example we
consider electron transport through a Coulomb blockade quantum dot for which we
show that the interactions on the quantum dot are clearly visible in the
high-order factorial cumulants. Our findings are important for understanding
the influence of interactions on counting statistics and the characterization
in terms of zeros of the generating function provides us with a simple
interpretation of recent experiments, where high-order statistics have been
measured.Comment: 12 pages, 7 figures, Editors' Suggestion in Phys. Rev.
Tunable few electron quantum dots in InAs nanowires
Quantum dots realized in InAs are versatile systems to study the effect of
spin-orbit interaction on the spin coherence, as well as the possibility to
manipulate single spins using an electric field. We present transport
measurements on quantum dots realized in InAs nanowires. Lithographically
defined top-gates are used to locally deplete the nanowire and to form
tunneling barriers. By using three gates, we can form either single quantum
dots, or two quantum dots in series along the nanowire. Measurements of the
stability diagrams for both cases show that this method is suitable for
producing high quality quantum dots in InAs.Comment: 8 pages, 4 figure
Current Fluctuations in the exclusion process and Bethe Ansatz
We use the Bethe Ansatz to derive analytical expressions for the current
statistics in the asymmetric exclusion process with both forward and backward
jumps. The Bethe equations are highly coupled and this fact has impeded their
use to derive exact results for finite systems. We overcome this technical
difficulty by a reformulation of the Bethe equations into a one variable
polynomial problem, akin to the functional Bethe Ansatz. The perturbative
solution of this equation leads to the cumulants of the current. We calculate
here the first two orders and derive exact formulae for the mean value of the
current and its fluctuations.Comment: 17 page
- …