695 research outputs found
S-AMP for Non-linear Observation Models
Recently we extended Approximate message passing (AMP) algorithm to be able
to handle general invariant matrix ensembles. In this contribution we extend
our S-AMP approach to non-linear observation models. We obtain generalized AMP
(GAMP) algorithm as the special case when the measurement matrix has zero-mean
iid Gaussian entries. Our derivation is based upon 1) deriving expectation
propagation (EP) like algorithms from the stationary-points equations of the
Gibbs free energy under first- and second-moment constraints and 2) applying
additive free convolution in free probability theory to get low-complexity
updates for the second moment quantities.Comment: 6 page
S-AMP: Approximate Message Passing for General Matrix Ensembles
In this work we propose a novel iterative estimation algorithm for linear
observation systems called S-AMP whose fixed points are the stationary points
of the exact Gibbs free energy under a set of (first- and second-) moment
consistency constraints in the large system limit. S-AMP extends the
approximate message-passing (AMP) algorithm to general matrix ensembles. The
generalization is based on the S-transform (in free probability) of the
spectrum of the measurement matrix. Furthermore, we show that the optimality of
S-AMP follows directly from its design rather than from solving a separate
optimization problem as done for AMP.Comment: 5 pages, 1 figur
Capacity Scaling in MIMO Systems with General Unitarily Invariant Random Matrices
We investigate the capacity scaling of MIMO systems with the system
dimensions. To that end, we quantify how the mutual information varies when the
number of antennas (at either the receiver or transmitter side) is altered. For
a system comprising receive and transmit antennas with , we find
the following: By removing as many receive antennas as needed to obtain a
square system (provided the channel matrices before and after the removal have
full rank) the maximum resulting loss of mutual information over all
signal-to-noise ratios (SNRs) depends only on , and the matrix of
left-singular vectors of the initial channel matrix, but not on its singular
values. In particular, if the latter matrix is Haar distributed the ergodic
rate loss is given by nats. Under
the same assumption, if with the ratio
fixed, the rate loss normalized by converges almost surely to
bits with denoting the binary entropy function. We also quantify and
study how the mutual information as a function of the system dimensions
deviates from the traditionally assumed linear growth in the minimum of the
system dimensions at high SNR.Comment: Accepted for publication in the IEEE Transactions on Information
Theor
A Traffic Model for Machine-Type Communications Using Spatial Point Processes
A source traffic model for machine-to-machine communications is presented in
this paper. We consider a model in which devices operate in a regular mode
until they are triggered into an alarm mode by an alarm event. The positions of
devices and events are modeled by means of Poisson point processes, where the
generated traffic by a given device depends on its position and event
positions. We first consider the case where devices and events are static and
devices generate traffic according to a Bernoulli process, where we derive the
total rate from the devices at the base station. We then extend the model by
defining a two-state Markov chain for each device, which allows for devices to
stay in alarm mode for a geometrically distributed holding time. The temporal
characteristics of this model are analyzed via the autocovariance function,
where the effect of event density and mean holding time are shown.Comment: Accepted at the 2017 IEEE 28th Annual International Symposium on
Personal, Indoor, and Mobile Radio Communications (PIMRC) - Workshop WS-07 on
"The Internet of Things (IoT), the Road Ahead: Applications, Challenges, and
Solutions
Recommended from our members
A comparative study of the philosophies of education of John Dewey and Jacques Maritain.
Thesis (M.S.
Recommended from our members
A study of factors relevant to the development of applied educational research training programs.
Variational Bayesian Inference of Line Spectra
In this paper, we address the fundamental problem of line spectral estimation
in a Bayesian framework. We target model order and parameter estimation via
variational inference in a probabilistic model in which the frequencies are
continuous-valued, i.e., not restricted to a grid; and the coefficients are
governed by a Bernoulli-Gaussian prior model turning model order selection into
binary sequence detection. Unlike earlier works which retain only point
estimates of the frequencies, we undertake a more complete Bayesian treatment
by estimating the posterior probability density functions (pdfs) of the
frequencies and computing expectations over them. Thus, we additionally capture
and operate with the uncertainty of the frequency estimates. Aiming to maximize
the model evidence, variational optimization provides analytic approximations
of the posterior pdfs and also gives estimates of the additional parameters. We
propose an accurate representation of the pdfs of the frequencies by mixtures
of von Mises pdfs, which yields closed-form expectations. We define the
algorithm VALSE in which the estimates of the pdfs and parameters are
iteratively updated. VALSE is a gridless, convergent method, does not require
parameter tuning, can easily include prior knowledge about the frequencies and
provides approximate posterior pdfs based on which the uncertainty in line
spectral estimation can be quantified. Simulation results show that accounting
for the uncertainty of frequency estimates, rather than computing just point
estimates, significantly improves the performance. The performance of VALSE is
superior to that of state-of-the-art methods and closely approaches the
Cram\'er-Rao bound computed for the true model order.Comment: 15 pages, 8 figures, accepted for publication in IEEE Transactions on
Signal Processin
Dynamical Functional Theory for Compressed Sensing
We introduce a theoretical approach for designing generalizations of the
approximate message passing (AMP) algorithm for compressed sensing which are
valid for large observation matrices that are drawn from an invariant random
matrix ensemble. By design, the fixed points of the algorithm obey the
Thouless-Anderson-Palmer (TAP) equations corresponding to the ensemble. Using a
dynamical functional approach we are able to derive an effective stochastic
process for the marginal statistics of a single component of the dynamics. This
allows us to design memory terms in the algorithm in such a way that the
resulting fields become Gaussian random variables allowing for an explicit
analysis. The asymptotic statistics of these fields are consistent with the
replica ansatz of the compressed sensing problem.Comment: 5 pages, accepted for ISIT 201
Superfast Line Spectral Estimation
A number of recent works have proposed to solve the line spectral estimation
problem by applying off-the-grid extensions of sparse estimation techniques.
These methods are preferable over classical line spectral estimation algorithms
because they inherently estimate the model order. However, they all have
computation times which grow at least cubically in the problem size, thus
limiting their practical applicability in cases with large dimensions. To
alleviate this issue, we propose a low-complexity method for line spectral
estimation, which also draws on ideas from sparse estimation. Our method is
based on a Bayesian view of the problem. The signal covariance matrix is shown
to have Toeplitz structure, allowing superfast Toeplitz inversion to be used.
We demonstrate that our method achieves estimation accuracy at least as good as
current methods and that it does so while being orders of magnitudes faster.Comment: 16 pages, 7 figures, accepted for IEEE Transactions on Signal
Processin
- …