14,072 research outputs found
Field-guided proton acceleration at reconnecting X-points in flares
An explicitly energy-conserving full orbit code CUEBIT, developed originally
to describe energetic particle effects in laboratory fusion experiments, has
been applied to the problem of proton acceleration in solar flares. The model
fields are obtained from solutions of the linearised MHD equations for
reconnecting modes at an X-type neutral point, with the additional ingredient
of a longitudinal magnetic field component. To accelerate protons to the
highest observed energies on flare timescales, it is necessary to invoke
anomalous resistivity in the MHD solution. It is shown that the addition of a
longitudinal field component greatly increases the efficiency of ion
acceleration, essentially because it greatly reduces the magnitude of drift
motions away from the vicinity of the X-point, where the accelerating component
of the electric field is largest. Using plasma parameters consistent with flare
observations, we obtain proton distributions extending up to gamma-ray-emitting
energies (>1MeV). In some cases the energy distributions exhibit a bump-on-tail
in the MeV range. In general, the shape of the distribution is sensitive to the
model parameters.Comment: 14 pages, 4 figures, accepted for publication in Solar Physic
Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points
The evolution of non-potential perturbations to a current-free magnetic
X-point configuration is studied, taking into account electron inertial effects
as well as resistivity. Electron inertia is shown to have a negligible effect
on the evolution of the system whenever the collisionless skin depth is less
than the resistive scale length. Non-potential magnetic field energy in this
resistive MHD limit initially reaches equipartition with flow energy, in
accordance with ideal MHD, and is then dissipated extremely rapidly, on an
Alfvenic timescale that is essentially independent of Lundquist number. In
agreement with resistive MHD results obtained by previous authors, the magnetic
field energy and kinetic energy are then observed to decay on a longer
timescale and exhibit oscillatory behavior, reflecting the existence of
discrete normal modes with finite real frequency. When the collisionless skin
depth exceeds the resistive scale length, the system again evolves initially
according to ideal MHD. At the end of this ideal phase, the field energy decays
typically on an Alfvenic timescale, while the kinetic energy (which is equally
partitioned between ions and electrons in this case) is dissipated on the
electron collision timescale. The oscillatory decay in the energy observed in
the resistive case is absent, but short wavelength structures appear in the
field and velocity profiles, suggesting the possibility of particle
acceleration in oppositely-directed current channels. The model provides a
possible framework for interpreting observations of energy release and particle
acceleration on timescales down to less than a second in the impulsive phase of
solar flares.Comment: 30 pages, 8 figure
The Relationship between Maternal Pre-Pregnancy BMI and Preschool Obesity
The increasing prevalence of obesity during pregnancy raises concerns over the intergenerational transmission of obesity and its potential to exacerbate the current obesity epidemic. The fetal origins hypothesis posits that the intrauterine environment might have lasting effects on children's outcomes. A large literature establishes that mother's pre-pregnancy obesity is correlated with obesity in her children. However, previous research is largely based on comparing individuals across families and hence cannot control for unobservable factors associated with both maternal and child obesity. We use both within-family comparisons and an instrumental variable approach on a sample of 4435 children to identify the effect of maternal pre-pregnancy obesity on obesity in preschool-aged children. Consistent with extant research, OLS models that rely on across-family comparisons indicate a significant correlation between maternal pre-pregnancy obesity and preschool obesity. However, maternal fixed effects render those associations insignificant. Instrumenting for mother's BMI with her sisters' BMI values confirms the null result indicating that the in utero transmission of obesity is likely not driving the increase in childhood obesity
The limits of filopodium stability
Filopodia are long, finger-like membrane tubes supported by cytoskeletal
filaments. Their shape is determined by the stiffness of the actin filament
bundles found inside them and by the interplay between the surface tension and
bending rigidity of the membrane. Although one might expect the Euler buckling
instability to limit the length of filopodia, we show through simple energetic
considerations that this is in general not the case. By further analyzing the
statics of filaments inside membrane tubes, and through computer simulations
that capture membrane and filament fluctuations, we show under which conditions
filopodia of arbitrary lengths are stable. We discuss several in vitro
experiments where this kind of stability has already been observed.
Furthermore, we predict that the filaments in long, stable filopodia adopt a
helical shape
A genome-wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity
Twenty years of genetic studies of marine invaders have shown that successful invaders are often characterized by native and introduced populations displaying similar levels of genetic diversity. This pattern is presumably due to high propagule pressure and repeated introductions. The opposite pattern is reported in this study of the brown seaweed, Sargassum muticum, an emblematic species for circumglobal invasions. Albeit demonstrating polymorphism in the native range, microsatellites failed to detect any genetic variation over 1,269 individuals sampled from 46 locations over the Pacific-Atlantic introduction range. Single-nucleotide polymorphisms (SNPs) obtained from ddRAD sequencing revealed some genetic variation, but confirmed severe founder events in both the Pacific and Atlantic introduction ranges. Our study thus exemplifies the need for extreme caution in interpreting neutral genetic diversity as a proxy for invasive potential. Our results confirm a previously hypothesized transoceanic secondary introduction from NE Pacific to Europe. However, the SNP panel unexpectedly revealed two additional distinct genetic origins of introductions. Also, conversely to scenarios based on historical records, southern rather than northern NE Pacific populations could have seeded most of the European populations. Finally, the most recently introduced populations showed the lowest selfing rates, suggesting higher levels of recombination might be beneficial at the early stage of the introduction process (i.e., facilitating evolutionary novelties), whereas uniparental reproduction might be favored later in sustainably established populations (i.e., sustaining local adaptation).Agence Nationale de la Recherche - ANR-10-BTBR-04; European Regional Development Fund; Fundacao para a Ciencia e a Tecnologia - SFRH/BPD/107878/2015, UID/Multi/04326/2016, UID/Multi/04326/2019; Brittany Region;info:eu-repo/semantics/publishedVersio
A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm
We report Gemini-South GMOS observations of the exoplanet system WASP-29
during primary transit as a test case for differential spectrophotometry. We
use the multi-object spectrograph to observe the target star and a comparison
star simultaneously to produce multiple light curves at varying wavelengths.
The 'white' light curve and fifteen 'spectral' light curves are analysed to
refine the system parameters and produce a transmission spectrum from 515 to
720nm. All light curves exhibit time-correlated noise, which we model using a
variety of techniques. These include a simple noise rescaling, a Gaussian
process model, and a wavelet based method. These methods all produce consistent
results, although with different uncertainties. The precision of the
transmission spectrum is improved by subtracting a common signal from all the
spectral light curves, reaching a typical precision of ~1x10^-4 in transit
depth. The transmission spectrum is free of spectral features, and given the
non-detection of a pressure broadened Na feature, we can rule out the presence
of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a
narrow Na core. This indicates that Na is not present in the atmosphere, and/or
that clouds/hazes play a significant role in the atmosphere and mask the broad
wings of the Na feature, although the former is a more likely explanation given
WASP-29b's equilibrium temperature of ~970 K, at which Na can form various
compounds. We also briefly discuss the use of Gaussian process and wavelet
methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected
in version
The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?
We report Gemini-North GMOS observations of the inflated hot Jupiter
HAT-P-32b during two primary transits. We simultaneously observed two
comparison stars and used differential spectro-photometry to produce
multi-wavelength light curves. 'White' light curves and 29 'spectral' light
curves were extracted for each transit and analysed to refine the system
parameters and produce transmission spectra from 520-930nm in ~14nm bins. The
light curves contain time-varying white noise as well as time-correlated noise,
and we used a Gaussian process model to fit this complex noise model. Common
mode corrections derived from the white light curve fits were applied to the
spectral light curves which significantly improved our precision, reaching
typical uncertainties in the transit depth of ~2x10^-4, corresponding to about
half a pressure scale height. The low resolution transmission spectra are
consistent with a featureless model, and we can confidently rule out broad
features larger than about one scale height. The absence of Na/K wings or
prominent TiO/VO features is most easily explained by grey absorption from
clouds in the upper atmosphere, masking the spectral features. However, we
cannot confidently rule out clear atmosphere models with low abundances (~10^-3
solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller
scale height or ionisation could also contribute to muted spectral features,
but alone are unable to to account for the absence of features reported here.Comment: 17 pages, 11 figures, 2 tables, accepted for publication in MNRA
A polynomial training algorithm for calculating perceptrons of optimal stability
Recomi (REpeated COrrelation Matrix Inversion) is a polynomially fast
algorithm for searching optimally stable solutions of the perceptron learning
problem. For random unbiased and biased patterns it is shown that the algorithm
is able to find optimal solutions, if any exist, in at worst O(N^4) floating
point operations. Even beyond the critical storage capacity alpha_c the
algorithm is able to find locally stable solutions (with negative stability) at
the same speed. There are no divergent time scales in the learning process. A
full proof of convergence cannot yet be given, only major constituents of a
proof are shown.Comment: 11 pages, Latex, 4 EPS figure
Development of a Next-Generation NIL Library in Arabidopsis Thaliana for Dissecting Complex Traits
The identification of the loci and specific alleles underlying variation in quantitative traits is an important goal for evolutionary biologists and breeders. Despite major advancements in genomics technology, moving from QTL to causal alleles remains a major challenge in genetics research. Near-isogenic lines are the ideal raw material for QTL validation, refinement of QTL location and, ultimately, gene discovery. Results: In this study, a population of 75 Arabidopsis thaliana near-isogenic lines was developed from an existing recombinant inbred line (RIL) population derived from a cross between physiologically divergent accessions Kas-1 and Tsu-1. First, a novel algorithm was developed to utilize genome-wide marker data in selecting RILs fully isogenic to Kas-1 for a single chromosome. Seven such RILs were used in 2 generations of crossing to Tsu-1 to create BC1 seed. BC1 plants were genotyped with SSR markers so that lines could be selected that carried Kas-1 introgressions, resulting in a population carrying chromosomal introgressions spanning the genome. BC1 lines were genotyped with 48 genome-wide SSRs to identify lines with a targeted Kas-1 introgression and the fewest genomic introgressions elsewhere. 75 such lines were selected and genotyped at an additional 41 SNP loci and another 930 tags using 2b-RAD genotyping by sequencing. The final population carried an average of 1.35 homozygous and 2.49 heterozygous introgressions per line with average introgression sizes of 5.32 and 5.16 Mb, respectively. In a simple case study, we demonstrate the advantage of maintaining heterozygotes in our library whereby fine-mapping efforts are conducted simply by self-pollination. Crossovers in the heterozygous interval during this single selfing generation break the introgression into smaller, homozygous fragments (sub-NILs). Additionally, we utilize a homozygous NIL for validation of a QTL underlying stomatal conductance, a low heritability trait. Conclusions: The present results introduce a new and valuable resource to the Brassicaceae research community that enables rapid fine-mapping of candidate loci in parallel with QTL validation. These attributes along with dense marker coverage and genome-wide chromosomal introgressions make this population an ideal starting point for discovery of genes underlying important complex traits of agricultural and ecological significance.NSF DEB-1022196, DEB-0618302, DEB-0618347, IOS-09221457Integrative Biolog
- âŠ