11,773 research outputs found

    Onset of Electron Acceleration in a Flare Loop

    Get PDF
    We carried out detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 12th August 2002, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keVs. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers a central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution indicating a quasi-steady state of the electron accelerator, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region

    Benchmark calculations for reduced density-matrix functional theory

    Full text link
    Reduced density-matrix functional theory (RDMFT) is a promising alternative approach to the problem of electron correlation. Like standard density functional theory, it contains an unknown exchange-correlation functional, for which several approximations have been proposed in the last years. In this article, we benchmark some of these functionals in an extended set of molecules with respect to total and atomization energies. Our results show that the most recent RDMFT functionals give very satisfactory results compared to more involved quantum chemistry and density functional approaches.Comment: 17 pages, 1 figur

    Electron Inertial Effects on Rapid Energy Redistribution at Magnetic X-points

    Full text link
    The evolution of non-potential perturbations to a current-free magnetic X-point configuration is studied, taking into account electron inertial effects as well as resistivity. Electron inertia is shown to have a negligible effect on the evolution of the system whenever the collisionless skin depth is less than the resistive scale length. Non-potential magnetic field energy in this resistive MHD limit initially reaches equipartition with flow energy, in accordance with ideal MHD, and is then dissipated extremely rapidly, on an Alfvenic timescale that is essentially independent of Lundquist number. In agreement with resistive MHD results obtained by previous authors, the magnetic field energy and kinetic energy are then observed to decay on a longer timescale and exhibit oscillatory behavior, reflecting the existence of discrete normal modes with finite real frequency. When the collisionless skin depth exceeds the resistive scale length, the system again evolves initially according to ideal MHD. At the end of this ideal phase, the field energy decays typically on an Alfvenic timescale, while the kinetic energy (which is equally partitioned between ions and electrons in this case) is dissipated on the electron collision timescale. The oscillatory decay in the energy observed in the resistive case is absent, but short wavelength structures appear in the field and velocity profiles, suggesting the possibility of particle acceleration in oppositely-directed current channels. The model provides a possible framework for interpreting observations of energy release and particle acceleration on timescales down to less than a second in the impulsive phase of solar flares.Comment: 30 pages, 8 figure

    A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720nm

    Get PDF
    We report Gemini-South GMOS observations of the exoplanet system WASP-29 during primary transit as a test case for differential spectrophotometry. We use the multi-object spectrograph to observe the target star and a comparison star simultaneously to produce multiple light curves at varying wavelengths. The 'white' light curve and fifteen 'spectral' light curves are analysed to refine the system parameters and produce a transmission spectrum from 515 to 720nm. All light curves exhibit time-correlated noise, which we model using a variety of techniques. These include a simple noise rescaling, a Gaussian process model, and a wavelet based method. These methods all produce consistent results, although with different uncertainties. The precision of the transmission spectrum is improved by subtracting a common signal from all the spectral light curves, reaching a typical precision of ~1x10^-4 in transit depth. The transmission spectrum is free of spectral features, and given the non-detection of a pressure broadened Na feature, we can rule out the presence of a Na rich atmosphere free of clouds or hazes, although we cannot rule out a narrow Na core. This indicates that Na is not present in the atmosphere, and/or that clouds/hazes play a significant role in the atmosphere and mask the broad wings of the Na feature, although the former is a more likely explanation given WASP-29b's equilibrium temperature of ~970 K, at which Na can form various compounds. We also briefly discuss the use of Gaussian process and wavelet methods to account for time correlated noise in transit light curves.Comment: 15 pages, 9 figures, 3 tables. Published in MNRAS. Figure 2 corrected in version

    The optical transmission spectrum of the hot Jupiter HAT-P-32b: clouds explain the absence of broad spectral features?

    Get PDF
    We report Gemini-North GMOS observations of the inflated hot Jupiter HAT-P-32b during two primary transits. We simultaneously observed two comparison stars and used differential spectro-photometry to produce multi-wavelength light curves. 'White' light curves and 29 'spectral' light curves were extracted for each transit and analysed to refine the system parameters and produce transmission spectra from 520-930nm in ~14nm bins. The light curves contain time-varying white noise as well as time-correlated noise, and we used a Gaussian process model to fit this complex noise model. Common mode corrections derived from the white light curve fits were applied to the spectral light curves which significantly improved our precision, reaching typical uncertainties in the transit depth of ~2x10^-4, corresponding to about half a pressure scale height. The low resolution transmission spectra are consistent with a featureless model, and we can confidently rule out broad features larger than about one scale height. The absence of Na/K wings or prominent TiO/VO features is most easily explained by grey absorption from clouds in the upper atmosphere, masking the spectral features. However, we cannot confidently rule out clear atmosphere models with low abundances (~10^-3 solar) of TiO, VO or even metal hydrides masking the Na and K wings. A smaller scale height or ionisation could also contribute to muted spectral features, but alone are unable to to account for the absence of features reported here.Comment: 17 pages, 11 figures, 2 tables, accepted for publication in MNRA

    Left ventricular systolic function evaluated by strain echocardiography and relationship with mortality in patients with severe sepsis or septic shock. a systematic review and meta-analysis

    Get PDF
    Sepsis-induced myocardial dysfunction is associated with poor outcomes, but traditional measurements of systolic function such as left ventricular ejection fraction (LVEF) do not directly correlate with prognosis. Global longitudinal strain (GLS) utilizing speckle-tracking echocardiography (STE) could be a better marker of intrinsic left ventricular (LV) function, reflecting myocardial deformation rather than displacement and volume changes. We sought to investigate the prognostic value of GLS in patients with sepsis and/or septic shock

    A dispersive wave pattern on Jupiter's fastest retrograde jet at 20∘20^\circS

    Full text link
    A compact wave pattern has been identified on Jupiter's fastest retrograding jet at 20S (the SEBs) on the southern edge of the South Equatorial Belt. The wave has been identified in both reflected sunlight from amateur observations between 2010 and 2015, thermal infrared imaging from the Very Large Telescope and near infrared imaging from the Infrared Telescope Facility. The wave pattern is present when the SEB is relatively quiescent and lacking large-scale disturbances, and is particularly notable when the belt has undergone a fade (whitening). It is generally not present when the SEB exhibits its usual large-scale convective activity ('rifts'). Tracking of the wave pattern and associated white ovals on its southern edge over several epochs have permitted a measure of the dispersion relationship, showing a strong correlation between the phase speed (-43.2 to -21.2 m/s) and the longitudinal wavelength, which varied from 4.4-10.0 deg. longitude over the course of the observations. Infrared imaging sensing low pressures in the upper troposphere suggest that the wave is confined to near the cloud tops. The wave is moving westward at a phase speed slower (i.e., less negative) than the peak retrograde wind speed (-62 m/s), and is therefore moving east with respect to the SEBs jet peak. Unlike the retrograde NEBn jet near 17N, which is a location of strong vertical wind shear that sometimes hosts Rossby wave activity, the SEBs jet remains retrograde throughout the upper troposphere, suggesting the SEBs pattern cannot be interpreted as a classical Rossby wave. Cassini-derived windspeeds and temperatures reveal that the vorticity gradient is dominated by the baroclinic term and becomes negative (changes sign) in a region near the cloud-top level (400-700 mbar) associated with the SEBs, suggesting a baroclinic origin for this meandering wave pattern. [Abr]Comment: 19 pages, 11 figures, article accepted for publication in Icaru

    Observations of Reconnection Flows in a Flare on the Solar Disk

    Get PDF
    Magnetic reconnection is a well-accepted part of the theory of solar eruptive events, though the evidence is still circumstantial. Intrinsic to the reconnection picture of a solar eruptive event, particularly in the standard model for two-ribbon flares ("CSHKP" model), are an advective flow of magnetized plasma into the reconnection region, expansion of field above the reconnection region as a flux rope erupts, retraction of heated post-reconnection loops, and downflows of cooling plasma along those loops. We report on a unique set of SDO/AIA imaging and Hinode/EIS spectroscopic observations of the disk flare SOL2016-03-23T03:54 in which all four flows are present simultaneously. This includes spectroscopic evidence for a plasma upflow in association with large-scale expanding closed inflow field. The reconnection inflows are symmetric, and consistent with fast reconnection, and the post-reconnection loops show a clear cooling and deceleration as they retract. Observations of coronal reconnection flows are still rare, and most events are observed at the solar limb, obscured by complex foregrounds, making their relationship to the flare ribbons, cusp field and arcades formed in the lower atmosphere difficult to interpret. The disk location and favorable perspective of this event have removed these ambiguities giving a clear picture of the reconnection dynamics.Comment: 9 pages, 5 figures, and 1 table. Accepted for publication in ApJ
    • …
    corecore