138 research outputs found

    KNO scaling of fluctuations in pp and pA, and eccentricities in heavy-ion collisions

    Full text link
    Multiplicity fluctuations at midrapidity in p+p collisions at high energies are described by a negative binomial distribution and exhibit approximate Koba-Nielsen-Olesen (KNO) scaling. We find that these KNO fluctuations are important also for reproducing the multiplicity distribution in d+Au collisions observed at RHIC, adding to the Glauber fluctuations of the number of binary collisions or participants. We predict that the multiplicity distribution in p+Pb collisions at the LHC also deviates little from the KNO scaling function. Finally, we analyze various moments of the eccentricity of the particle production zone in A+A collisions at RHIC and LHC and find that particle production fluctuations increase fluctuation dominated moments such as the triangularity epsilon_3 substantially.Comment: 7 pages, 6 figures; v2: updated references and a few minor modifications, to appear in PR

    Fluctuations, Saturation, and Diffractive Excitation in High Energy Collisions

    Full text link
    Diffractive excitation is usually described by the Good--Walker formalism for low masses, and by the triple-Regge formalism for high masses. In the Good--Walker formalism the cross section is determined by the fluctuations in the interaction. In this paper we show that by taking the fluctuations in the BFKL ladder into account, it is possible to describe both low and high mass excitation by the Good--Walker mechanism. In high energy pppp collisions the fluctuations are strongly suppressed by saturation, which implies that pomeron exchange does not factorise between DIS and pppp collisions. The Dipole Cascade Model reproduces the expected triple-Regge form for the bare pomeron, and the triple-pomeron coupling is estimated.Comment: 20 pages, 12 figure

    Lattice calculation of 1+1^{-+} hybrid mesons with improved Kogut-Susskind fermions

    Get PDF
    We report on a lattice determination of the mass of the exotic 1+1^{-+} hybrid meson using an improved Kogut-Susskind action. Results from both quenched and dynamical quark simulations are presented. We also compare with earlier results using Wilson quarks at heavier quark masses. The results on lattices with three flavors of dynamical quarks show effects of sea quarks on the hybrid propagators which probably result from coupling to two meson states. We extrapolate the quenched results to the physical light quark mass to allow comparison with experimental candidates for the 1+1^{-+} hybrid meson. The lattice result remains somewhat heavier than the experimental result, although it may be consistent with the π1(1600)\pi_1(1600).Comment: 24 pages, 12 figures. Replaced to match published versio

    Refinement of severely incomplete structures with maximum likelihood in BUSTER–TNT

    Get PDF

    Extracting the Distribution Amplitudes of the rho meson from the Color Glass Condensate

    Full text link
    We extract the leading twist-2 and subleading twist-3 Distribution Amplitudes (DAs) of the rho meson using the HERA data on diffractive rho photoproduction. We do so using several Colour Glass Condensate (CGC) inspired and a Regge inspired dipole models. We find that our extracted twist-2 DA is not much model dependent and is consistent with QCD Sum Rules and lattice predictions. The extracted twist-3 DA is more model dependent but is still consistent with the Sum Rules prediction.Comment: 21 pages, 10 figures, 3 tables. Section 6 revised, figures 8 and 9 and table 3 updated. Conclusions essentially unchange

    Elastic and quasi-elastic pppp and γp\gamma^\star p scattering in the Dipole Model

    Full text link
    We have in earlier papers presented an extension of Mueller's dipole cascade model, which includes sub-leading effects from energy conservation and running coupling as well as colour suppressed saturation effects from pomeron loops via a ``dipole swing''. The model was applied to describe the total and diffractive cross sections in pppp and γp\gamma^*p collisions, and also the elastic cross section in pppp scattering. In this paper we extend the model to describe the corresponding quasi-elastic cross sections in γp\gamma^*p, namely the exclusive production of vector mesons and deeply virtual compton scattering. Also for these reactions we find a good agrement with measured cross sections. In addition we obtain a reasonable description of the tt-dependence of the elastic pppp and quasi-elastic γp\gamma^\star p cross sections

    Probing collective effects in hadronisation with the extremes of the underlying event

    Get PDF
    We define a new set of observables to probe the structure of the underlying event in hadron collisions. We use the conventional definition of the `transverse region' in jet events and, for a fixed window in jet pp_\perp, propose to measure several discriminating quantities as a function of the level of activity in the transverse region. The measurement of these observables in LHC data would reveal whether, e.g., the properties of `low-UE' events are compatible with equivalent measurements in e+ee^+e^- collisions (jet universality), and whether the scaling behaviour towards `high-UE' events exhibits properties of non-trivial soft-QCD dynamics, such as colour re-connections or other collective phenomena. We illustrate at s=13\sqrt{s} = 13 TeV that significant discriminatory power is obtained in comparisons between MC models with varying treatments of collective effects, including Pythia 8, EPOS, and Dipsy.Comment: 23 pages, 8 figure
    corecore