35 research outputs found

    Four years (2011–2015) of total gaseous mercury measurements from the Cape Verde Atmospheric Observatory

    Get PDF
    Mercury is a chemical with widespread anthropogenic emissions that is known to be highly toxic to humans, ecosystems and wildlife. Global anthropogenic emissions are around 20 % higher than natural emissions and the amount of mercury released into the atmosphere has increased since the industrial revolution. In 2005 the European Union and the United States adopted measures to reduce mercury use, in part to offset the impacts of increasing emissions in industrialising countries. The changing regional emissions of mercury have impacts on a range of spatial scales. Here we report 4 years (December 2011–December 2015) of total gaseous mercury (TGM) measurements at the Cape Verde Observatory (CVO), a global WMO-GAW station located in the subtropical remote marine boundary layer. Observed total gaseous mercury concentrations were between 1.03 and 1.33 ng m−3 (10th, 90th percentiles), close to expectations based on previous interhemispheric gradient measurements. We observe a decreasing trend in TGM (−0.05 ± 0.04 ng m−3 yr−1, −4.2 % ± 3.3 % yr−1) over the 4 years consistent with the reported decrease of mercury concentrations in North Atlantic surface waters and reductions in anthropogenic emissions. The decrease was more visible in the summer (July–September) than in the winter (December–February), when measurements were impacted by air from the African continent and Sahara/Sahel regions. African air masses were also associated with the highest and most variable TGM concentrations. We suggest that the less pronounced downward trend inclination in African air may be attributed to poorly controlled anthropogenic sources such as artisanal and small-scale gold mining (ASGM) in West Africa

    Enhanced chlorinated very short-lived substances in South East Asia:Potential source regions and source types

    Get PDF
    Enhancements of the mixing ratios of short-lived halogenated gases were observed in air samples collected at Bachok Marine Research Station (BMRS), Peninsular Malaysia during Northern Hemisphere winters in 2013/2014 and 2015/2016. This study investigates the potential source regions and source types that influenced the variability in chlorinated very short-lived substances (Cl-VSLS) [dichloromethane, 1,2-dichloroethane, trichloromethane, tetrachloroethene] and methyl halides [methyl chloride and methyl bromide]. The UK Met Office’s Numerical Atmospheric Modelling Environment (NAME) dispersion model, was used for tracking the origin of air masses arriving at BMRS. For the purpose of identifying possible sources of these compounds, carbon monoxide (CO) emission data taken from the Representative Concentration Pathway 8.5 were used along with NAME footprints to calculate modelled CO mixing ratios. A correlation analysis between the mixing ratios of measured compounds and the modelled CO from various emission sectors was perform to assess the extent to which emission sectors might be related to the mixing ratios of halogenated gases. The results show that the events of higher mixing ratios were associated with air masses, especially from East China. During the 2013/2014 campaign, the modelled CO from industrial, solvents and agriculture (waste burning on fields) were significantly correlated with the mixing ratios of Cl-VSLS (R > 0.7) and methyl halides (R > 0.40). During the 2015/2016 campaign, the strength of these correlations reduced for Cl-VSLS (R > 0.5) and with no significant correlations for methyl halides. Instead, mixing ratios of methyl halides were correlated (R=0.4) with modelled CO from forest burning. This work provides evidence that East and South East Asia act as important sources of halogenated gases. This is of significant given the proximity of these regions to prevalent deep convection which can rapidly transport these halogen-containing gases into the stratosphere and impact the ozone layer

    Basic science232. Certolizumab pegol prevents pro-inflammatory alterations in endothelial cell function

    Get PDF
    Background: Cardiovascular disease is a major comorbidity of rheumatoid arthritis (RA) and a leading cause of death. Chronic systemic inflammation involving tumour necrosis factor alpha (TNF) could contribute to endothelial activation and atherogenesis. A number of anti-TNF therapies are in current use for the treatment of RA, including certolizumab pegol (CZP), (Cimzia ®; UCB, Belgium). Anti-TNF therapy has been associated with reduced clinical cardiovascular disease risk and ameliorated vascular function in RA patients. However, the specific effects of TNF inhibitors on endothelial cell function are largely unknown. Our aim was to investigate the mechanisms underpinning CZP effects on TNF-activated human endothelial cells. Methods: Human aortic endothelial cells (HAoECs) were cultured in vitro and exposed to a) TNF alone, b) TNF plus CZP, or c) neither agent. Microarray analysis was used to examine the transcriptional profile of cells treated for 6 hrs and quantitative polymerase chain reaction (qPCR) analysed gene expression at 1, 3, 6 and 24 hrs. NF-κB localization and IκB degradation were investigated using immunocytochemistry, high content analysis and western blotting. Flow cytometry was conducted to detect microparticle release from HAoECs. Results: Transcriptional profiling revealed that while TNF alone had strong effects on endothelial gene expression, TNF and CZP in combination produced a global gene expression pattern similar to untreated control. The two most highly up-regulated genes in response to TNF treatment were adhesion molecules E-selectin and VCAM-1 (q 0.2 compared to control; p > 0.05 compared to TNF alone). The NF-κB pathway was confirmed as a downstream target of TNF-induced HAoEC activation, via nuclear translocation of NF-κB and degradation of IκB, effects which were abolished by treatment with CZP. In addition, flow cytometry detected an increased production of endothelial microparticles in TNF-activated HAoECs, which was prevented by treatment with CZP. Conclusions: We have found at a cellular level that a clinically available TNF inhibitor, CZP reduces the expression of adhesion molecule expression, and prevents TNF-induced activation of the NF-κB pathway. Furthermore, CZP prevents the production of microparticles by activated endothelial cells. This could be central to the prevention of inflammatory environments underlying these conditions and measurement of microparticles has potential as a novel prognostic marker for future cardiovascular events in this patient group. Disclosure statement: Y.A. received a research grant from UCB. I.B. received a research grant from UCB. S.H. received a research grant from UCB. All other authors have declared no conflicts of interes

    Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Global disparities in surgeons’ workloads, academic engagement and rest periods: the on-calL shIft fOr geNEral SurgeonS (LIONESS) study

    Get PDF
    : The workload of general surgeons is multifaceted, encompassing not only surgical procedures but also a myriad of other responsibilities. From April to May 2023, we conducted a CHERRIES-compliant internet-based survey analyzing clinical practice, academic engagement, and post-on-call rest. The questionnaire featured six sections with 35 questions. Statistical analysis used Chi-square tests, ANOVA, and logistic regression (SPSS® v. 28). The survey received a total of 1.046 responses (65.4%). Over 78.0% of responders came from Europe, 65.1% came from a general surgery unit; 92.8% of European and 87.5% of North American respondents were involved in research, compared to 71.7% in Africa. Europe led in publishing research studies (6.6 ± 8.6 yearly). Teaching involvement was high in North America (100%) and Africa (91.7%). Surgeons reported an average of 6.7 ± 4.9 on-call shifts per month, with European and North American surgeons experiencing 6.5 ± 4.9 and 7.8 ± 4.1 on-calls monthly, respectively. African surgeons had the highest on-call frequency (8.7 ± 6.1). Post-on-call, only 35.1% of respondents received a day off. Europeans were most likely (40%) to have a day off, while African surgeons were least likely (6.7%). On the adjusted multivariable analysis HDI (Human Development Index) (aOR 1.993) hospital capacity > 400 beds (aOR 2.423), working in a specialty surgery unit (aOR 2.087), and making the on-call in-house (aOR 5.446), significantly predicted the likelihood of having a day off after an on-call shift. Our study revealed critical insights into the disparities in workload, access to research, and professional opportunities for surgeons across different continents, underscored by the HDI

    Defining an ageing-related pathology, disease or syndrome: International Consensus Statement

    Get PDF
    Around the world, individuals are living longer, but an increased average lifespan does not always equate to an increased health span. With advancing age, the increased prevalence of ageing-related diseases can have a significant impact on health status, functional capacity and quality of life. It is therefore vital to develop comprehensive classification and staging systems for ageing-related pathologies, diseases and syndromes. This will allow societies to better identify, quantify, understand and meet the healthcare, workforce, well-being and socioeconomic needs of ageing populations, whilst supporting the development and utilisation of interventions to prevent or to slow, halt or reverse the progression of ageing-related pathologies. The foundation for developing such classification and staging systems is to define the scope of what constitutes an ageing-related pathology, disease or syndrome. To this end, a consensus meeting was hosted by the International Consortium to Classify Ageing-Related Pathologies (ICCARP), on February 19, 2024, in Cardiff, UK, and was attended by 150 recognised experts. Discussions and voting were centred on provisional criteria that had been distributed prior to the meeting. The participants debated and voted on these. Each criterion required a consensus agreement of ≥ 70% for approval. The accepted criteria for an ageing-related pathology, disease or syndrome were (1) develops and/or progresses with increasing chronological age; (2) should be associated with, or contribute to, functional decline or an increased susceptibility to functional decline and (3) evidenced by studies in humans. Criteria for an ageing-related pathology, disease or syndrome have been agreed by an international consortium of subject experts. These criteria will now be used by the ICCARP for the classification and ultimately staging of ageing-related pathologies, diseases and syndromes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Review : Untangling the influence of air-mass history in interpreting observed atmospheric composition

    Get PDF
    Is wind direction an adequate marker of air mass history? This review looks at the evolution of methods for assessing the effect of the origin and pathway of air masses on composition change and trends. The composition of air masses and how they evolve and the changing contribution of sources and receptors are key elements in atmospheric science. Source–receptor relationships of atmospheric composition can be investigated with back trajectory techniques, tracing forward from a defined geographical origin to arrive at measurement sites where the composition may have altered during transport. The distinction between the use of wind sector analysis, trajectory models and dispersion models to interpret composition measurements is explained and the advantages and disadvantages of each are illustrated with examples. Historical uses of wind roses, back trajectories and dispersion models are explained as well as the methods for grouping and clustering air masses. The interface of these methods to the corresponding chemistry measured at the receptor sites is explored. The review does not detail the meteorological derivation of trajectories or the complexity of the models but focus on their application and the statistical analyses used to compare them with in situ composition measurements. A newly developed methodology for analysing atmospheric observatory composition data according to air mass pathways calculated with the NAME dispersion model is given as a detailed case study. The steps in this methodology are explained with relevance to the Weybourne Atmospheric Observatory in the UK

    A year of H 2 measurements at Weybourne Atmospheric Observatory, UK

    Full text link
    We present a year-long high precision time series of atmospheric molecular hydrogen (H2) measured at the UK North Sea coast from March 2008 to February 2009. We observed a pronounced seasonal cycle in H2 with mean values in late winter/early spring ~40 ppb higher than those in late summer/early autumn. Background-subtracted molar H2/CO ratios (ΔH2/ΔCO) averaged 0.35±0.002 for all data combined and 0.25±0.002 when ΔH2 was above 10 ppb. The ΔH2/ΔCO ratio was highest in summer, possibly as a result of larger photochemical production. Using simultaneous measurements of ozone, we estimated the deposition velocity of H2 during nocturnal inversion events to average 3.5±0.7×10−4 m s−1 for June 2008 and 1.9±1×10−4 m s−1 for July 2008, in good agreement with other reported estimates. In May 2008, we observed an episode of exceptionally clean air being transported from the tropics but arriving from the north, in which H2 was slightly elevated indicating minimal surface loss. On another occasion with south-easterly winds, we believe we detected emissions from H2 production facilities in the near-continent characterised by H2 mixing ratios reaching 1450 ppb
    corecore