12 research outputs found
Human Papillomavirus Antibodies And Future Risk Of Anogenital Cancer: A Nested Case-control Study In The European Prospective Investigation Into Cancer And Nutrition Study
Purpose: Human papillomavirus (HPV) type 16 (HPV16) causes cancer at several anatomic sites. In the European Prospective Investigation Into Cancer and Nutrition study, HPV16 E6 seropositivity was present more than 10 years before oropharyngeal cancer diagnosis and was nearly absent in controls. The current study sought to evaluate the extent to which HPV16 E6 antibodies are present before diagnosis of anogenital cancers within the same cohort. Methods: Four hundred incident anogenital cancers (273 cervical, 24 anal, 67 vulvar, 12 vaginal, and 24 penile cancers) with prediagnostic blood samples (collected on average 3 and 8 years before diagnosis for cervix and noncervix cancers, respectively) and 718 matched controls were included. Plasma was analyzed for antibodies against HPV16 E6 and multiple other HPV proteins and genotypes and evaluated in relation to risk using unconditional logistic regression. Results: HPV16 E6 seropositivity was present in 29.2% of individuals (seven of 24 individuals) who later developed anal cancer compared with 0.6% of controls (four of 718 controls) who remained cancer free (odds ratio [OR], 75.9; 95% CI, 17.9 to 321). HPV16 E6 seropositivity was less common for cancers of the cervix (3.3%), vagina (8.3%), vulva (1.5%), and penis (8.3%). No associations were seen for non-type 16 HPV E6 antibodies, apart from anti-HPV58 E6 and anal cancer (OR, 6.8; 95% CI, 1.4 to 33.1). HPV16 E6 seropositivity tended to increase in blood samples drawn closer in time to cancer diagnosis. Conclusion: HPV16 E6 seropositivity is relatively common before diagnosis of anal cancer but rare for other HPV-related anogenital cancers
Impaired IL-23-dependent induction of IFN-gamma underlies mycobacterial disease in patients with inherited TYK2 deficiency
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-alpha/beta (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the common P1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23-dependent induction of IFN-gamma is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling.ANRS Nord-Sud ; CIBSS ; CODI ; Comité para el Desarrollo de la Investigación ; Fulbright Future Scholarshi
Familial NK cell deficiency associated with impaired IL-2- and IL-15-dependent survival of lymphocytes.
We previously reported the clinical phenotype of two siblings with a novel inherited developmental and immunodeficiency syndrome consisting of severe intrauterine growth retardation and the impaired development of specific lymphoid lineages, including transient CD8 alphabeta T lymphopenia and a persistent lack of blood NK cells. We describe here the elucidation of a plausible underlying pathogenic mechanism, with a cellular phenotype of impaired survival of both fresh and herpesvirus saimiri-transformed T cells, in the surviving child. Clearly, NK cells could not be studied. However, peripheral blood T lymphocytes displayed excessive apoptosis ex vivo. Moreover, the survival rates of CD4 and CD8 alphabeta T cell blasts generated in vitro, and herpesvirus saimiri-transformed T cells cultured in vitro, were low, but not nil, following treatment with IL-2 and IL-15. In contrast, Fas-mediated activation-induced cell death was not enhanced, indicating a selective excess of cytokine deprivation-mediated apoptosis. In keeping with the known roles of IL-2 and IL-15 in the development of NK and CD8 T cells in the mouse model, these data suggest that an impaired, but not abolished, survival response to IL-2 and IL-15 accounts for the persistent lack of NK cells and the transient CD8 alphabeta T lymphopenia documented in vivo. Impaired cytokine-mediated lymphocyte survival is likely to be the pathogenic mechanism underlying this novel form of inherited and selective NK deficiency in humans
Three novel forms of autosomal recessive TYK2 deficiency
Human cells homozygous for rare loss-of-expression (LOE) TYK2 alleles have impaired, but not abolished, cellular responses to IFN-α/β (underlying viral diseases in the patients) and to IL-12 and IL-23 (underlying mycobacterial diseases). Cells homozygous for the commonP1104A TYK2 allele have selectively impaired responses to IL-23 (underlying isolated mycobacterial disease). We report three new forms of TYK2 deficiency in six patients from five families homozygous for rare TYK2 alleles (R864C, G996R, G634E, or G1010D) or compound heterozygous for P1104A and a rare allele (A928V). All these missense alleles encode detectable proteins. The R864C and G1010D alleles are hypomorphic and loss-of-function (LOF), respectively, across signaling pathways. By contrast, hypomorphic G996R, G634E, and A928V mutations selectively impair responses to IL-23, like P1104A. Impairment of the IL-23–dependent induction of IFN-γ is the only mechanism of mycobacterial disease common to patients with complete TYK2 deficiency with or without TYK2 expression, partial TYK2 deficiency across signaling pathways, or rare or common partial TYK2 deficiency specific for IL-23 signaling