7 research outputs found

    Relationship between Novel Elastography Techniques and Renal Fibrosis—Preliminary Experience in Patients with Chronic Glomerulonephritis

    No full text
    Introduction: A renal biopsy represents the gold standard in the diagnosis, prognosis, and management of patients with glomerulonephritis. So far, non-invasive elastographic techniques have not confirmed their utility in replacing a biopsy; however, the new and improved software from Hologic Supersonic Mach 30 is a promising method for assessing the renal tissue’s stiffness and viscosity. We investigated whether this elastography technique could reveal renal tissue fibrosis in patients with chronic glomerulonephritis. Materials and methods: Two-dimensional-shear wave elastography (SWE) PLUS and viscosity plane-wave ultrasound (Vi PLUS) assessments were performed in 40 patients with chronic glomerulopathies before being referred for a renal biopsy. For each kidney, the mean values of five stiffness and viscosity measures were compared with the demographic, biological, and histopathological parameters of the patients. Results: In total, 26 men and 14 women with a mean age of 52.35 ± 15.54 years, a mean estimated glomerular filtration rate (eGFR) of 53.8 ± 35.49 mL/min/1.73m2, and a mean proteinuria of 6.39 ± 7.42 g/24 h were included after providing their informed consent. Out of 40 kidney biopsies, 2 were uninterpretable with inappropriate material and were divided into four subgroups based on their fibrosis percentage. Even though these elastography techniques were unable to differentiate between separate fibrosis stages, when predicting between the fibrosis and no-fibrosis group, we found a cut-off value of <20.77 kPa with the area under the curve (AUC) of 0.860, a p < 0.001 with 88.89% sensitivity, and a 75% specificity for the 2D SWE PLUS measures and a cut-off value of <2.8 Pa.s with an AUC of 0.792, a p < 0.001 with 94% sensitivity, and a 60% specificity for the Vi PLUS measures. We also found a cut-off value of <19.75kPa for the 2D SWE PLUS measures (with an AUC of 0.789, p = 0.0001 with 100% sensitivity, and a 74.29% specificity) and a cut-off value of <1.28 Pa.s for the Vi PLUS measures (with an AUC 0.829, p = 0.0019 with 60% sensitivity, and a 94.29% specificity) differentiating between patients with over 40% fibrosis and those with under 40%. We also discovered a positive correlation between the glomerular filtration rate (eGFR) and 2D-SWE PLUS values (r = 0.7065, p < 0.0001) and Vi PLUS values (r = 0.3637, p < 0.0211). C reactive protein (CRP) correlates with the Vi PLUS measures (r = -0.3695, p = 0.0189) but not with the 2D SWE PLUS measures (r = −0.2431, p = 0.1306). Conclusion: Our findings indicate that this novel elastography method can distinguish between individuals with different stages of renal fibrosis, correlate with the renal function and inflammation, and are easy to use and reproducible, but further research is needed for them to be employed routinely in clinical practice

    Relationship between Novel Elastography Techniques and Renal Fibrosis—Preliminary Experience in Patients with Chronic Glomerulonephritis

    No full text
    Introduction: A renal biopsy represents the gold standard in the diagnosis, prognosis, and management of patients with glomerulonephritis. So far, non-invasive elastographic techniques have not confirmed their utility in replacing a biopsy; however, the new and improved software from Hologic Supersonic Mach 30 is a promising method for assessing the renal tissue’s stiffness and viscosity. We investigated whether this elastography technique could reveal renal tissue fibrosis in patients with chronic glomerulonephritis. Materials and methods: Two-dimensional-shear wave elastography (SWE) PLUS and viscosity plane-wave ultrasound (Vi PLUS) assessments were performed in 40 patients with chronic glomerulopathies before being referred for a renal biopsy. For each kidney, the mean values of five stiffness and viscosity measures were compared with the demographic, biological, and histopathological parameters of the patients. Results: In total, 26 men and 14 women with a mean age of 52.35 ± 15.54 years, a mean estimated glomerular filtration rate (eGFR) of 53.8 ± 35.49 mL/min/1.73m2, and a mean proteinuria of 6.39 ± 7.42 g/24 h were included after providing their informed consent. Out of 40 kidney biopsies, 2 were uninterpretable with inappropriate material and were divided into four subgroups based on their fibrosis percentage. Even though these elastography techniques were unable to differentiate between separate fibrosis stages, when predicting between the fibrosis and no-fibrosis group, we found a cut-off value of p p p = 0.0001 with 100% sensitivity, and a 74.29% specificity) and a cut-off value of p = 0.0019 with 60% sensitivity, and a 94.29% specificity) differentiating between patients with over 40% fibrosis and those with under 40%. We also discovered a positive correlation between the glomerular filtration rate (eGFR) and 2D-SWE PLUS values (r = 0.7065, p r = 0.3637, p p = 0.0189) but not with the 2D SWE PLUS measures (r = −0.2431, p = 0.1306). Conclusion: Our findings indicate that this novel elastography method can distinguish between individuals with different stages of renal fibrosis, correlate with the renal function and inflammation, and are easy to use and reproducible, but further research is needed for them to be employed routinely in clinical practice

    Non-Invasive Evaluation of Kidney Elasticity and Viscosity in a Healthy Cohort

    No full text
    Introduction: There is currently a lack of published data on kidney elasticity and viscosity. Non-invasive techniques, such as two-dimensional shear-wave elastography (2D-SWE PLUS) and viscosity plane-wave ultrasound (Vi PLUS), have surfaced as new detection methods, which, thanks to efficient processing software, are expected to improve renal stiffness and viscosity measurements. This study aims to be the first one to assess the normal range values in normal renal function subjects and to investigate the factors that impact them. Methods: We conducted a cross-sectional study employing 50 participants (29 women and 21 men) with a mean age of 42.22 ± 13.17, a mean estimated glomerular filtration rate (eGFR) of 97.12 ± 11 mL/min/1.73 m2, a mean kidney length of 10.16 ± 0.66 cm, and a mean body mass index (BMI) of 24.24 ± 3.98. With a C6-1X convex transducer and the Ultra-FastTM software available on the Hologic Aixplorer Mach 30 ultrasound system, we acquired five measurements of renal cortical stiffness and viscosity (achieved from five distinct images in the middle part of the subcapsular cortex) from each kidney. The ten measurements’ median values correlated with the participant’s demographical, biological, and clinical parameters. Results: The mean kidney elasticity was 31.88 ± 2.89 kiloPascal (kPa), and the mean viscosity was 2.44 ± 0.57 Pascal.second (Pa.s) for a mean measurement depth 4.58 ± 1.02 cm. Renal stiffness seemed to be influenced by age (r = −0.7047, p < 0.0001), the measurement depth (r = −0.3776, p = 0.0075), and eGFR (r = 0.6101, p < 0.0001) but not by BMI (r = −0.2150, p = 0.1338), while viscosity appeared to be impacted by age (r = −0.4251, p = 0.0021), eGFR (r = 0.4057, p = 0.0038), the measurement depth (r = −0.4642, p = 0.0008), and BMI (r = −0.3676, p = 0.0086). The results of the one-way ANOVA used to test the differences in the variables among the three age sub-groups are statistically significant for both 2D-SWE PLUS (p < 0.001) and Vi PLUS (p = 0.015). The method found good intra-operator reproducibility for the 2D-SWE PLUS measurements, with an ICC of 0.8365 and a 95% CI of 0.7512 to 0.8990, and for the Vi PLUS measurements, with an ICC of 0.9 and a 95% CI of 0.8515 to 0.9397. Conclusions: Renal stiffness and viscosity screening may become an efficacious, low-cost way to gather supplemental diagnostic data from patients with chronic kidney disease (CKD). The findings demonstrate that these non-invasive methods are highly feasible and not influenced by gender and that their values correlate with renal function and decrease with age progression. Nevertheless, more research is required to ascertain their place in clinical practice

    Exploring New Therapeutic Avenues for Ophthalmic Disorders: Glaucoma-Related Molecular Docking Evaluation and Bibliometric Analysis for Improved Management of Ocular Diseases

    No full text
    Ophthalmic disorders consist of a broad spectrum of ailments that impact the structures and functions of the eye. Due to the crucial function of the retina in the vision process, the management of eye ailments is of the utmost importance, but several unmet needs have been identified in terms of the outcome measures in clinical trials, more proven minimally invasive glaucoma surgery, and a lack of comprehensive bibliometric assessments, among others. The current evaluation seeks to fulfill several of these unmet needs via a dual approach consisting of a molecular docking analysis based on the potential of ripasudil and fasudil to inhibit Rho-associated protein kinases (ROCKs), virtual screening of ligands, and pharmacokinetic predictions, emphasizing the identification of new compounds potentially active in the management of glaucoma, and a comprehensive bibliometric analysis of the most recent publications indexed in the Web of Science evaluating the management of several of the most common eye conditions. This method resulted in the finding of ligands (i.e., ZINC000000022706 with the most elevated binding potential for ROCK1 and ZINC000034800307 in the case of ROCK2) that are not presently utilized in any therapeutic regimen but may represent a future option to be successfully applied in the therapeutic scheme of glaucoma following further comprehensive testing validations. In addition, this research also analyzed multiple papers listed in the Web of Science collection of databases via the VOSviewer application to deliver, through descriptive analysis of the results, an in-depth overview of publications contributing to the present level of comprehension in therapeutic approaches to ocular diseases in terms of scientific impact, citation analyses, most productive authors, journals, and countries, as well as collaborative networks. Based on the molecular docking study’s preliminary findings, the most promising candidates must be thoroughly studied to determine their efficacy and risk profiles. Bibliometric analysis may also help researchers set targets to improve ocular disease outcomes

    Micropulse Laser Therapy as an Integral Part of Eye Disease Management

    No full text
    Ocular diseases can significantly impact vision and quality of life through pathophysiological alterations to the structure of the eye. The management of these conditions often involves a combination of pharmaceutical interventions, surgical procedures, and laser therapy. Laser technology has revolutionized many medical fields, including ophthalmology, offering precise and targeted treatment options that solve some of the unmet needs of other therapeutic strategies. Conventional laser techniques, while effective, can generate excessive thermal energy, leading to collateral tissue damage and potential side effects. Compared to conventional laser techniques, micropulse laser therapy delivers laser energy in a pulsed manner, minimizing collateral damage while effectively treating target tissues. The present paper highlights the advantages of micropulse laser therapy over conventional laser treatments, presents the implications of applying these strategies to some of the most prevalent ocular diseases, and highlights several types and mechanisms of micropulse lasers. Although micropulse laser therapy shows great potential in the management of ocular diseases, further research is needed to optimize treatment protocols, evaluate long-term efficacy, and explore its role in combination therapies
    corecore