475 research outputs found

    Molecular Mechanism of Capacitative Calcium Entry Deficits in Familial Alzheimer’s Disease

    Get PDF
    Poster PresentationPresenilin (PS) is the catalytic subunit of the gamma-secretase which is responsible for the cleavage of amyloid precursor protein to form beta amyloid (AΞ²). Mutations in PS associated with familial Alzheimer’s disease (FAD) increase the AΞ² plaques formation in the brain and cause neurodegeneration. Apart from this, FAD-linked PS mutations have been demonstrated to disrupt intracellular calcium (Ca2+) regulation. Accumulating evidence suggests that Ca2+ disruption may play a proximal role in the AD pathogenesis. Mutant PS exaggerated Ca2+ release from the endoplasmic reticulum (ER). It also attenuated Ca2+ entry through the capacitative Ca2+ entry (CCE) pathway, yet, the mechanism is not fully understood. Using a human neuroblast cell line SH-SY5Y and Ca2+ imaging technique, we observed CCE deficits in FAD-linked PS1-M146L retroviral infected cell. The attenuation of CCE in PS1 mutant cells was not mediated by the down-regulation of STIM1 and Orai1 expression, the known essential molecular players in the CCE pathway. Instead, we identified a molecular interaction between PS and STIM1 proteins by immunoprecipitation. On the other hand, immunofluorescence staining showed a significant reduction in puncta formation after ER Ca2+ depleted by thapsigargin in cells infected with PS1-M146L as compared to the wild type PS1 infected cells. Taken together, our results suggest a molecular mechanism for the CCE deficits in FAD associated with PS1 mutations. The interaction of mutant PS1 with STIM1 exerts a negative impact on its oligomerization and/or its interaction with Orai1. Our results may suggest molecular targets for the development of therapeutic agents that help to treat the disease.published_or_final_versio

    Coumarins and pyranocoumarins, potential novel pharmacophores for inhibition ofmeasles virus replication

    Get PDF
    A series of coumarin and pyranocoumarin analogues were evaluated in vitro for antiviral efficacy against measles virus (MV), strain Chicago. Of the 22 compounds tested for inhibition, six were found to have selectivity indices greater than 10. These were compounds 5-hydroxy-7-propionyloxy- 4-propylcoumarin (2a), 5,7-bis(tosyloxy)-4- propylcoumarin (7); 5-hydroxy-4-propyl-7-tosyloxy- coumarin (8); 6,6-dimethyl-9-propionyloxy-4- propyl-2H,6H-benzo[1,2-b:3,4-bβ€²]dipyran-2-one (9); 6,6-dimethyl-9-pivaloyloxy-4-propyl-2H,6Hbenzo[ 1,2-b:3,4-bβ€²]dipyran-2-one (10); and 7,8-cis- 10,11,12-trans-4-propyl-6,6,10,11-tetramethyl- 7,8,9-trihydroxy-2H,6H,12H-benzo[1,2-b:3,4-bβ€²:5,6- bβ€²β€²]tripyran-2-one (18). Three of the active drugs were propyl coumarin analogues (2a, 7 and 8), two were dipyranone or chromeno-coumarins (9 and 10), and one was a benzotripyranone with a coumarin nucleus (18). Some appeared to be rather specific and potent inhibitors of MV with EC50 values ranging from 0.2 to 50 ΞΌg/ml and the majority of the EC50 values being less than 5 ΞΌg/ml. The compounds inhibited an additional nine strains of MV, and in virucidal tests the drugs did not physically disrupt the virion to inhibit virus replication. The inhibitory activity for one of the compounds tested (7) was somewhat dependent on virus concentration and it was still active when added to cells up to 24 h after virus exposure. When used in combination with ribavirin, compound 7 appeared not to profoundly affect the antiviral efficacy of ribavirin or its cell-associated toxicity. However, a slightly antagonistic MVinhibitory effect was observed at the highest concentration of ribavirin used in combination with most concentrations of compound 7 tested. This and related compounds may be valuable leads in the development of a potent and selective class of MV inhibitors that could be used in future in the clinic

    Towards the clinical implementation of pharmacogenetics in bipolar disorder.

    Get PDF
    BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD

    Stress-Induced Reinstatement of Drug Seeking: 20 Years of Progress

    Get PDF
    In human addicts, drug relapse and craving are often provoked by stress. Since 1995, this clinical scenario has been studied using a rat model of stress-induced reinstatement of drug seeking. Here, we first discuss the generality of stress-induced reinstatement to different drugs of abuse, different stressors, and different behavioral procedures. We also discuss neuropharmacological mechanisms, and brain areas and circuits controlling stress-induced reinstatement of drug seeking. We conclude by discussing results from translational human laboratory studies and clinical trials that were inspired by results from rat studies on stress-induced reinstatement. Our main conclusions are (1) The phenomenon of stress-induced reinstatement, first shown with an intermittent footshock stressor in rats trained to self-administer heroin, generalizes to other abused drugs, including cocaine, methamphetamine, nicotine, and alcohol, and is also observed in the conditioned place preference model in rats and mice. This phenomenon, however, is stressor specific and not all stressors induce reinstatement of drug seeking. (2) Neuropharmacological studies indicate the involvement of corticotropin-releasing factor (CRF), noradrenaline, dopamine, glutamate, kappa/dynorphin, and several other peptide and neurotransmitter systems in stress-induced reinstatement. Neuropharmacology and circuitry studies indicate the involvement of CRF and noradrenaline transmission in bed nucleus of stria terminalis and central amygdala, and dopamine, CRF, kappa/dynorphin, and glutamate transmission in other components of the mesocorticolimbic dopamine system (ventral tegmental area, medial prefrontal cortex, orbitofrontal cortex, and nucleus accumbens). (3) Translational human laboratory studies and a recent clinical trial study show the efficacy of alpha-2 adrenoceptor agonists in decreasing stress-induced drug craving and stress-induced initial heroin lapse

    Association of the polygenic scores for personality traits and response to selective serotonin reuptake inhibitors in patients with major depressive disorder

    Get PDF
    Studies reported a strong genetic correlation between the Big Five personality traits and major depressive disorder (MDD). Moreover, personality traits are thought to be associated with response to antidepressants treatment that might partly be mediated by genetic factors. In this study, we examined whether polygenic scores (PGSs) derived from the Big Five personality traits predict treatment response and remission in patients with MDD who were prescribed selective serotonin reuptake inhibitors (SSRIs). In addition, we performed meta-analyses of genome-wide association studies (GWASs) on these traits to identify genetic variants underpinning the cross-trait polygenic association. The PGS analysis was performed using data from two cohorts: the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS, n = 529) and the International SSRI Pharmacogenomics Consortium (ISPC, n = 865). The cross-trait GWAS meta-analyses were conducted by combining GWAS summary statistics on SSRIs treatment outcome and on the personality traits. The results showed that the PGS for openness and neuroticism were associated with SSRIs treatment outcomes at p < 0.05 across PT thresholds in both cohorts. A significant association was also found between the PGS for conscientiousness and SSRIs treatment response in the PGRN-AMPS sample. In the cross-trait GWAS meta-analyses, we identified eight loci associated with (a) SSRIs response and conscientiousness near YEATS4 gene and (b) SSRI remission and neuroticism eight loci near PRAG1, MSRA, XKR6, ELAVL2, PLXNC1, PLEKHM1, and BRUNOL4 genes. An assessment of a polygenic load for personality traits may assist in conjunction with clinical data to predict whether MDD patients might respond favorably to SSRIs.Azmeraw T. Amare, Klaus Oliver Schubert, Fasil Tekola-Ayele, Yi-Hsiang Hsu, Katrin Sangkuhl … Bernhard T. Baune … et al

    The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response

    Get PDF
    Response to treatment with selective serotonin reuptake inhibitors (SSRIs) varies considerably between patients. The International SSRI Pharmacogenomics Consortium (ISPC) was formed with the primary goal of identifying genetic variation that may contribute to response to SSRI treatment of major depressive disorder. A genome-wide association study of 4-week treatment outcomes, measured using the 17-item Hamilton Rating Scale for Depression (HRSD-17), was performed using data from 865 subjects from seven sites. The primary outcomes were percent change in HRSD-17 score and response, defined as at least 50% reduction in HRSD-17. Data from two prior studies, the Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomics Study (PGRN-AMPS) and the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, were used for replication, and a meta-analysis of the three studies was performed (N=2394). Although many top association signals in the ISPC analysis map to interesting candidate genes, none were significant at the genome-wide level and the associations were not replicated using PGRN-AMPS and STAR*D data. Top association results in the meta-analysis of response included single-nucleotide polymorphisms (SNPs) in the HPRTP4 (hypoxanthine phosphoribosyltransferase pseudogene 4)/VSTM5 (V-set and transmembrane domain containing 5) region, which approached genome-wide significance (P=5.03E-08) and SNPs 5' upstream of the neuregulin-1 gene, NRG1 (P=1.20E-06). NRG1 is involved in many aspects of brain development, including neuronal maturation and variations in this gene have been shown to be associated with increased risk for mental disorders, particularly schizophrenia. Replication and functional studies of these findings are warranted.JM Biernacka … BT Baune et. al

    Independent Risk Factors for Injury in Pre-School Children: Three Population-Based Nested Case-Control Studies Using Routine Primary Care Data

    Get PDF
    Background: Injuries in childhood are largely preventable yet an estimated 2,400 children die every day because of injury and violence. Despite this, the factors that contribute to injury occurrence have not been quantified at the population scale using primary care data. We used The Health Improvement Network (THIN) database to identify risk factors for thermal injury, fractures and poisoning in pre-school children in order to inform the optimal delivery of preventative strategies. Methods: We used a matched, nested case-control study design. Cases were children under 5 with a first medically recorded injury, comprising 3,649 thermal injury cases, 4,050 fracture cases and 2,193 poisoning cases, matched on general practice to 94,620 control children. Results: Younger maternal age and higher birth order increased the odds of all injuries. Children’s age of highest injury risk varied by injury type; compared with children under 1 year, thermal injuries were highest in those age 1-2 (OR = 2.43, 95%CI 2.23–2.65), poisonings in those age 2-3 (OR = 7.32, 95%CI 6.26–8.58) and fractures in those age 3-5 (OR = 3.80, 95%CI 3.42–4.23). Increasing deprivation was an important modifiable risk factor for poisonings and thermal injuries (tests for trend p#0.001) as were hazardous/harmful alcohol consumption by a household adult (OR = 1.73, 95%CI 1.26–2.38 and OR = 1.39, 95%CI 1.07–1.81 respectively) and maternal diagnosis of depression (OR = 1.45, 95%CI 1.24–1.70 and OR = 1.16, 95%CI 1.02–1.32 respectively). Fracture was not associated with these factors, however, not living in single-adult household reduced the odds of fracture (OR = 0.88, 95%CI 0.82–0.95). Conclusions: Maternal depression, hazardous/harmful adult alcohol consumption and socioeconomic deprivation represent important modifiable risk factors for thermal injury and poisoning but not fractures in preschool children. Since these risk factors can be ascertained from routine primary care records, pre-school children’s frequent visits to primary care present an opportunity to reduce injury risk by implementing effective preventative interventions from existing national guidelines

    Downregulated miR-195 Detected in Preeclamptic Placenta Affects Trophoblast Cell Invasion via Modulating ActRIIA Expression

    Get PDF
    Preeclampsia (PE) is a pregnancy-specific syndrome manifested by on-set of hypertension and proteinuria after 20 weeks of gestation. Abnormal placenta development has been generally accepted as initial cause of the disorder. Recently, miR-195 was found to be down-regulated in preeclamptic placentas compared with normal pregnant ones, indicating possible association of this small molecule with placental pathology of preeclampsia. By far the function of miR-195 in the development of placenta remains unknown.Bioinformatic assay predicted ActRIIA as one of the targets for miR-195. By using Real-time PCR, Western blotting and Dual Luciferase Assay, we validated that ActRIIA was the direct target of miR-195 in human trophoblast cells. Transwell insert invasion assay showed that miR-195 could promote cell invasion in trophoblast cell line, HTR8/SVneo cells, and the effect could be abrogated by overexpressed ActRIIA. In preeclamptic placenta tissues, pri-miR-195 and mature miR-195 expressions were down-regulated, whereas ActRIIA level appeared to be increased when compared with that in gestational-week-matched normal placentas.This is the first report on the function of miR-195 in human placental trophoblast cells which reveals an invasion-promoting effect of the small RNA via repressing ActRIIA. Aberrant expression of miR-195 may contribute to the occurrence of preeclampsia through interfering with Activin/Nodal signaling mediated by ActRIIA in human placenta

    Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model

    Get PDF
    Diet and lifestyle produce major effects on tumour incidence, prevalence, and natural history. Moderate dietary restriction has long been recognised as a natural therapy that improves health, promotes longevity, and reduces both the incidence and growth of many tumour types. Dietary restriction differs from fasting or starvation by reducing total food and caloric intake without causing nutritional deficiencies. No prior studies have evaluated the responsiveness of malignant brain cancer to dietary restriction. We found that a moderate dietary restriction of 30–40% significantly inhibited the intracerebral growth of the CT-2A syngeneic malignant mouse astrocytoma by almost 80%. The total dietary intake for the ad libitum control group (n=9) and the dietary restriction experimental group (n=10) was about 20 and 13 Kcal dayβˆ’1, respectively. Overall health and vitality was better in the dietary restriction-fed mice than in the ad libitum-fed mice. Tumour microvessel density (Factor VIII immunostaining) was two-fold less in the dietary restriction mice than in the ad libitum mice, whereas the tumour apoptotic index (TUNEL assay) was three-fold greater in the dietary restriction mice than in the ad libitum mice. CT-2A tumour cell-induced vascularity was also less in the dietary restriction mice than in the ad libitum mice in the in vivo Matrigel plug assay. These findings indicate that dietary restriction inhibited CT-2A growth by reducing angiogenesis and by enhancing apoptosis. Dietary restriction may shift the tumour microenvironment from a proangiogenic to an antiangiogenic state through multiple effects on the tumour cells and the tumour-associated host cells. Our data suggest that moderate dietary restriction may be an effective antiangiogenic therapy for recurrent malignant brain cancers

    MicroRNA deregulation and pathway alterations in nasopharyngeal carcinoma

    Get PDF
    MicroRNAs (miRNAs) are a family of small non-coding RNA molecules of about 20–23 nucleotides in length, which negatively regulate protein-coding genes at post-transcriptional level. Using a stem-loop real-time-PCR method, we quantified the expression levels of 270 human miRNAs in 13 nasopharyngeal carcinoma (NPC) samples and 9 adjacent normal tissues, and identified 35 miRNAs whose expression levels were significantly altered in NPC samples. Several known oncogenic miRNAs, including miR-17-92 cluster and miR-155, are among the miRNAs upregulated in NPC. Tumour suppressive miRNAs, including miR-34 family, miR-143, and miR-145, are significantly downregulated in NPC. To explore the roles of these dysregulated miRNAs in the pathogenesis of NPC, a computational analysis was performed to predict the pathways collectively targeted by the 22 significantly downregulated miRNAs. Several biological pathways that are well characterised in cancer are significantly targeted by the downregulated miRNAs. These pathways include TGF-Wnt pathways, G1-S cell cycle progression, VEGF signalling pathway, apoptosis and survival pathways, and IP3 signalling pathways. Expression levels of several predicted target genes in G1-S progression and VEGF signalling pathways were elevated in NPC tissues and showed inverse correlation with the down-modulated miRNAs. These results indicate that these downregulated miRNAs coordinately regulate several oncogenic pathways in NPC
    • …
    corecore