125 research outputs found

    Glucagon-Like Peptide-1 Modulates Neurally-Evoked Mucosal Chloride Secretion in Guinea Pig Small Intestine In Vitro.

    Get PDF
    Glucagon-like peptide-1 (GLP-1) acts at the G protein-coupled receptor, GLP-1R, to stimulate secretion of insulin and to inhibit secretion of glucagon and gastric acid. Involvement in mucosal secretory physiology has received negligible attention. We aimed to study involvement of GLP-1 in mucosal chloride secretion in the small intestine. Ussing chamber methods, in concert with transmural electrical field stimulation (EFS), were used to study actions on neurogenic chloride secretion. ELISA was used to study GLP-1R effects on neural release of acetylcholine (ACh). Intramural localization of GLP-1R was assessed with immunohistochemistry. Application of GLP-1 to serosal or mucosal sides of flat-sheet preparations in Ussing chambers did not change baseline short-circuit current (Isc), which served as a marker for chloride secretion. Transmural EFS evoked neurally mediated biphasic increases in Isc that had an initial spike-like rising phase followed by a sustained plateau-like phase. Blockade of the EFS-evoked responses by tetrodotoxin indicated that the responses were neurally mediated. Application of GLP-1 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-1 receptor antagonist exendin-(9 –39) suppressed this action of GLP-1. The GLP-1 inhibitory action on EFS-evoked responses persisted in the presence of nicotinic or vasoactive intestinal peptide receptor antagonists but not in the presence of a muscarinic receptor antagonist. GLP-1 significantly reduced EFS-evoked ACh release. In the submucosal plexus, GLP-1R immunoreactivity (IR) was expressed by choline acetyltransferase- IR neurons, neuropeptide Y-IR neurons, somatostatin-IR neurons, and vasoactive intestinal peptide-IR neurons. Our results suggest that GLP-1R is expressed in guinea pig submucosal neurons and that its activation leads to a decrease in neurally evoked chloride secretion by suppressing release of ACh at neuroepithelial junctions in the enteric neural networks that control secretomotor functions

    Angiotensin II positively modulates the spontaneous contractile activity of mouse and human colon via activation of AT1 receptors.

    Get PDF
    Objective: Angiotensin II (Ang II) is a potent smooth muscle contractile neurohumoral agonist but has not been much investigated with regard to gastrointestinal motor activity. Ang II effects are mediated by specific receptors, the Ang II type 1 (AT1) and the Ang II type 2 (AT2) receptors, which are well expressed in the gut. In this study we evaluated the effects of Ang II on the contractile activity of longitudinal muscle from mouse and human colon and we analysed the subtype(s) of receptors involved in the observed effects. Methods: Mechanical responses to Ang II, in the absence or in the presence of different drugs, were assessed in vitro in colonic longitudinal muscle from mice and humans, as changes in isometric tension. Results: In the murine proximal and distal colon Ang II induced a concentration-dependent muscular contraction, which was reduced by the AT1 receptor antagonist, losartan, but it was not affected by the AT2 receptor antagonist, PD123319. Pretreatment with TTX, sodium voltage-gated neural channel blocker, partially reduced the contractile response to Ang II in the proximal colon, while abolished it in the distal colon. Atropine, muscarinic receptor antagonist, or SR140333, NK1 receptor antagonist, reduced the TTX-sensitive excitatory effects induced by Ang II in both preparations. On the contrary, hexamethonium, nicotinic receptor antagonists, ondansetron, 5-HT3 receptor antagonist, or SR48968, NK2 receptor antagonist, were ineffective. The contraction induced by a selective NK1 receptor agonist was reduced by atropine, whilst SR140333 did not affected carbachol inducing muscular contraction. Ang II induced a muscular contraction even in the human distal colonic longitudinal muscle preparations. The concentration–response curve was shifted to the right by losartan but it was unaffected by PD123319. TTX and atropine partially antagonized the response to Ang II. Conclusion: In the longitudinal muscle preparations from mouse and human colon Ang II positively modulates the spontaneous contractile activity via activation of post-junctional and pre-junctional AT1 receptors, the latter located on the enteric nerves and modulating the release of tachykinins and acethylcoline. In mouse tachykinergic neurons and cholinergic neurons are sequentially recruited by Ang II to induce muscular contraction

    Angiotensin II contractile effects in mouse colon: role for pre- and post-junctional AT1A receptors

    Get PDF
    Aim: This study investigates whether a local renin–angiotensin system (RAS) exists in mouse colon and whether angiotensin II (Ang II) may play a role in the regulation of the contractile activity. Methods: Isometric recordings were performed in vitro on the longitudinal muscle of mouse proximal and distal colon. Transcripts encoding for RAS components were investigated by RT-PCR. Results: Ang II caused, in both preparations, a concentration-dependent contractile effect, antagonized by losartan, AT1 receptor antagonist, but not by PD123319, AT2 receptor antagonist. The combination of losartan plus PD123319 caused no change on the Ang II-induced contraction than losartan alone. Tetrodotoxin, neural blocker, reduced the contractile response to Ang II in the proximal colon, whilst the response was abolished in the distal colon. In both preparations, atropine, muscarinic receptor antagonist, or SR140333, NK1 receptor antagonist, reduced the Ang II responses. Ondansetron, 5-HT3 receptor antagonist, SR48968, NK2 receptor antagonist, or hexamethonium, nicotinic receptor antagonist, were ineffective. The joint application of atropine and SR140333 produced no additive effect. Atropine reduced NK1-induced contraction. Transcripts encoding RAS components were detected in the colon samples. However, just AT1A mRNA was expressed in both preparations, and AT2 mRNA was expressed only in the distal colon. Conclusion: In the murine colon, local RAS may play a significant role in the control of contractile activity. Ang II positively modulates the spontaneous contractile activity via activation of post-junctional and pre-junctional AT1A receptors, the latter located on the enteric neurones, modulating the release of tachykinins and acetylcholine

    Glucagon-like peptide-2 modulates neurally evoked mucosal chloride secretion in guinea pig small intestine in vitro

    Get PDF
    Glucagon-like peptide-2 (GLP-2) is an important neuroendocrine peptide in intestinal physiology. It influences digestion, absorption, epithelial growth, motility, and blood flow. We studied involvement of GLP-2 in intestinal mucosal secretory behavior. Submucosal-mucosal preparations from guinea pig ileum were mounted in Ussing chambers for measurement of shortcircuit current (Isc) as a surrogate for chloride secretion. GLP-2 action on neuronal release of acetylcholine was determined with ELISA. Enteric neuronal expression of the GLP-2 receptor (GLP-2R) was studied with immunohistochemical methods. Application of GLP-2 (0.1–100 nM) to the serosal or mucosal side of the preparations evoked no change in baseline Isc and did not alter transepithelial ionic conductance. Transmural electrical field stimulation (EFS) evoked characteristic biphasic increases in Isc, with an initially rapid rising phase followed by a sustained phase. Application of GLP-2 reduced the EFS-evoked biphasic responses in a concentration-dependent manner. The GLP-2R antagonist GLP-2-(3-33) significantly reversed suppression of the EFS-evoked responses by GLP-2. Tetrodotoxin, scopolamine, and hexamethonium, but not vasoactive intestinal peptide type 1 receptor (VPAC1) antagonist abolished or reduced to near zero the EFS-evoked responses. GLP-2 suppressed EFS-evoked acetylcholine release as measured by ELISA. Pretreatment with GLP-2- (3-33) offset this action of GLP-2. In the submucosal plexus, GLP-2R immunoreactivity (-IR) was expressed in choline acetyltransferase-IR neurons, somatostatin-IR neurons, neuropeptide Y-IR neurons, and vasoactive intestinal peptide-IR neurons. We conclude that submucosal neurons in the guinea pig ileum express GLP-2R. Activation of GLP-2R decreases neuronally evoked epithelial chloride secretion by suppressing acetylcholine release from secretomotor neurons

    GLP-2 receptor expression in excitatory and inhibitory enteric neurons and its role in mouse duodenum contractility.

    Get PDF
    Background. Glucagon-like peptide 2 (GLP-2), a nutrient-responsive hormone, exerts various actions in the gastrointestinal tract that are mediated by a G-protein coupled receptor called GLP-2R. A little information is available on GLP-2R expression in enteric neurons and nothing on the interstitial cells of Cajal (ICC). Methods. We investigated presence and distribution of the GLP-2R in the mouse duodenum by immunohistochemistry and the potential motor effects of GLP-2 on the spontaneous and neurally evoked mechanical activity. Key Results. The GLP-2R was expressed by the myenteric and submucosal neurons. Labelling was also present in nerve varicosities within the circular muscular layer and at the deep muscular plexus (DMP). No immunoreactive nerve fiber was seen within the longitudinal muscle layer. The GLP-2R-positive neurons were either excitatory (SP- and choline-acetyltransferase-positive) or inhibitory (vasoactive intestinal polypeptide and nNOS-positive). The ICC, both at the myenteric plexus and at theDMP,never expressed GLP-2R but, especially those at the DMP, were surrounded by GLP-2R-positive nerve varicosities co-expressing either excitatory or inhibitory neurotransmitters. Quantitative analysis demonstrated a consistent prevalence of GLP-2R on the excitatory pathways. In agreement, the functional results showed that the administration of GLP-2 in vitro caused decrease of the spontaneous contractions mediated by nitric oxide release and reduction of the evoked cholinergic contractions. Conclusions & Inferences. The present findings indicate that the GLP-2R is expressed by inhibitory and excitatory neurons, the GLP-2 inhibits the muscle contractility likely decreasing cholinergic neurotransmission and increasing nitric oxide production, and this effect is possibly mediated by the ICC-DMP recruitment

    Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon

    Get PDF
    The aim of this study was to analyze whether arginine vasopressin (AVP) may be considered a modulator of intestinal motility. In this view, we evaluated, in vitro, the effects induced by exogenous administration of AVP on the contractility of mouse distal colon, the subtype(s) of receptor(s) activated and the action mechanism. Isometric recordings were performed on longitudinal and circular muscle strips of mouse distal colon. AVP (0.001 nM–100 nM) caused concentration-dependent contractile effects only on the longitudinal muscle, antagonized by the V1 receptor antagonist, V-1880. AVP-induced effect was not modified by tetrodotoxin, atropine and indomethacin. Contractile response to AVP was reduced in Ca2+-free solution or in the presence of nifedipine, and it was abolished by depletion of calcium intracellular stores after repetitive addition of carbachol in calcium-freemediumwith addition of cyclopiazonic acid.U-73122, an inhibitor of the phospholipase C, effectively antagonized AVP effects, whilst it was not affected by an adenylyl cyclase inhibitor. Oxytocin induced an excitatory effect in the longitudinalmuscle of distal colon at very high concentrations, effect antagonized by V-1880. The results of this study shown that AVP, via activation of V1 receptors, is able to modulate positively contractile activity of longitudinal muscle of mouse distal colon, independently by enteric nerve activation and prostaglandin synthesis. Contractile response is achieved by increase in cytoplasmatic Ca2+ concentration via extracellular Ca2+ influx from L-type Ca2+ channels and via Ca2+ release from intracellular stores through phospholipase C pathway. No modulation has been observed on the contractility of the circular muscle

    Insulin Resistance as Common Molecular Denominator Linking Obesity to Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is an aging-related multi-factorial disorder to which metabolic factors contribute at what has canonically been considered a centrally mediated process. Although the exact underlying mechanisms are still unknown, obesity is recognized as a risk factor for AD and the condition of insulin resistance seems to be the link between the two pathologies. Using mice with high fat diet (HFD) obesity we dissected the molecular mechanisms shared by the two disorders. Brains of HFD fed mice showed elevated levels of APP and Aβ40/Aβ42 together with BACE, GSK3β and Tau proteins involved in APP processing and Aβ accumulation. Immunofluorescence, Thioflavin T staining experiments, confirmed increased Aβ generation, deposition in insoluble fraction and plaques formation in both the hippocampus and the cerebral cortex of HFD mice. Presence of Aβ40/Aβ42 in the insoluble fraction was also shown by ELISA assay. Brain insulin resistance was demonstrated by reduced presence of insulin receptor (IRs) and defects in Akt-Foxo3a insulin signaling. We found reduced levels of phospho-Akt and increased levels of Foxo3a in the nuclei of neurons where proapototic genes were activated. Dysregulation of different genes related to insulin resistance, especially those involved in inflammation and adipocytokines synthesis were analyzed by Profiler PCR array. Further, HFD induced oxidative stress, mitochondrial dysfunction and dynamics as demonstrated by expression of biomarkers involved in these processes. Here, we provide evidence that obesity and AD markers besides insulin resistance are associated with inflammation, adipokine dyshomeostasis, oxidative stress and mitochondrial dysfunction, all mechanisms leading to neurodegeneration

    Aphanizomenon flos-aquae (AFA) Extract Prevents Neurodegeneration in the HFD Mouse Model by Modulating Astrocytes and Microglia Activation

    Get PDF
    Obesity and related metabolic dysfunctions are associated with neurodegenerative diseases, such as Alzheimer's disease. Aphanizomenon flos-aquae (AFA) is a cyanobacterium considered a suitable supplement for its nutritional profile and beneficial properties. The potential neuroprotective effect of an AFA extract, commercialized as KlamExtra®, including the two AFA extracts Klamin® and AphaMax®, in High-Fat Diet (HFD)-fed mice was explored. Three groups of mice were provided with a standard diet (Lean), HFD or HFD supplemented with AFA extract (HFD + AFA) for 28 weeks. Metabolic parameters, brain insulin resistance, expression of apoptosis biomarkers, modulation of astrocytes and microglia activation markers, and Aβ deposition were analyzed and compared in the brains of different groups. AFA extract treatment attenuated HFD-induced neurodegeneration by reducing insulin resistance and loss of neurons. AFA supplementation improved the expression of synaptic proteins and reduced the HFD-induced astrocytes and microglia activation, and Aβ plaques accumulation. Together, these outcomes indicate that regular intake of AFA extract could benefit the metabolic and neuronal dysfunction caused by HFD, decreasing neuroinflammation and promoting Aβ plaques clearanc

    Obesogenic Diets Cause Alterations on Proteins and Theirs Post-Translational Modifications in Mouse Brains

    Get PDF
    Obesity constitutes a major global health threat and is associated with a variety of diseases ranging from metabolic and cardiovascular disease, cancer to neurodegeneration. The hallmarks of neurodegeneration include oxidative stress, proteasome impairment, mitochondrial dysfunction and accumulation of abnormal protein aggregates as well as metabolic alterations. As an example, in post-mortem brain of patients with Alzheimer's disease (AD), several studies have reported reduction of insulin, insulin-like growth factor 1 and insulin receptor and an increase in tau protein and glycogen-synthase kinase-3 beta compared to healthy controls suggesting an impairment of metabolism in the AD patient's brain. Given these lines of evidence, in the present study we investigated brains of mice treated with 2 obesogenic diets, high-fat diet (HFD) and high-glycaemic diet (HGD), compared to mice fed with a standard diet (SD) employing a quantitative mass spectrometry-based approach. Moreover, post-translational modified proteins (phosphorylated and N-linked glycosylated) were studied. The aim of the study was to identify proteins present in the brain that are changing their expression based on the diet given to the mice. We believed that some of these changes would highlight pathways and molecular mechanisms that could link obesity to brain impairment. The results showed in this study suggest that, together with cytoskeletal proteins, mitochondria and metabolic proteins are changing their post-translational status in brains of obese mice. Specifically, proteins involved in metabolic pathways and in mitochondrial functions are mainly downregulated in mice fed with obesogenic diets compared to SD. These changes suggest a reduced metabolism and a lower activity of mitochondria in obese mice. Some of these proteins, such as PGM1 and MCT1 have been shown to be involved in brain impairment as well. These results might shed light on the well-studied correlation between obesity and brain damage. The results presented here are in agreement with previous findings and aim to open new perspectives on the connection between diet-induced obesity and brain impairment
    • …
    corecore