3 research outputs found

    Proniosomal Gel for Topical Delivery of Rutin: Preparation, Physicochemical Characterization and In Vitro Toxicological Profile Using 3D Reconstructed Human Epidermis Tissue and 2D Cells

    No full text
    Rutin (Rut) is a natural flavonol, well-known for its broad-spectrum of therapeutic effects, including antioxidant and antitumoral activities; still, it has a reduced clinical outcome due to its limited solubility in aqueous solutions. To overcome this drawback, this study proposes a novel formulation for rutin as a proniosomal gel for cutaneous applications. The gel was prepared by coacervation phase-separation method and complies with the standard requirements in terms of particle size (140.5 ± 2.56 nm), zeta potential (−27.33 ± 0.09 mV), encapsulation capacity (> 50%), pH (7.002 ± 0.18) and rheological properties. The results showed high biocompatibility of the gel on the 3D reconstructed human epidermis model characterized by increased viability of the cells and a lack of irritant and phototoxic potential. The evaluations on 2D cells confirm the preferential cytotoxic effect of Rut on melanoma cells (IC50 value = 8.601 µM, nuclear fragmentation) compared to normal keratinocytes. Our data suggest that the proniosomal gel is a promising drug carrier for Rut in the management and prevention of skin disorders

    Investigation of Lupeol as Anti-Melanoma Agent: An In Vitro-In Ovo Perspective

    No full text
    Malignant melanoma (MM) represents the most life-threatening skin cancer worldwide, with a narrow and inefficient chemotherapeutic arsenal available in advanced disease stages. Lupeol (LUP) is a triterpenoid-type phytochemical possessing a broad spectrum of pharmacological properties, including a potent anticancer effect against several neoplasms (e.g., colorectal, lung, and liver). However, its potential as an anti-melanoma agent has been investigated to a lesser extent. The current study focused on exploring the impact of LUP against two human MM cell lines (A375 and RPMI-7951) in terms of cell viability, confluence, morphology, cytoskeletal distribution, nuclear aspect, and migration. Additionally, the in ovo antiangiogenic effect has been also examined. The in vitro results indicated concentration-dependent and selective cytotoxicity against both MM cell lines, with estimated IC50 values of 66.59 ± 2.20 for A375, and 45.54 ± 1.48 for RPMI-7951, respectively, accompanied by a reduced cell confluence, apoptosis-specific nuclear features, reorganization of cytoskeletal components, and inhibited cell migration. In ovo, LUP interfered with the process of angiogenesis by reducing the formation of neovascularization. Despite the potential anti-melanoma effect illustrated in our in vitro-in ovo study, further investigations are required to elucidate the underlying LUP-induced effects in A375 and RPMI-7951 MM cells

    Proniosomal Gel for Topical Delivery of Rutin: Preparation, Physicochemical Characterization and In Vitro Toxicological Profile Using 3D Reconstructed Human Epidermis Tissue and 2D Cells

    No full text
    Rutin (Rut) is a natural flavonol, well-known for its broad-spectrum of therapeutic effects, including antioxidant and antitumoral activities; still, it has a reduced clinical outcome due to its limited solubility in aqueous solutions. To overcome this drawback, this study proposes a novel formulation for rutin as a proniosomal gel for cutaneous applications. The gel was prepared by coacervation phase-separation method and complies with the standard requirements in terms of particle size (140.5 ± 2.56 nm), zeta potential (−27.33 ± 0.09 mV), encapsulation capacity (> 50%), pH (7.002 ± 0.18) and rheological properties. The results showed high biocompatibility of the gel on the 3D reconstructed human epidermis model characterized by increased viability of the cells and a lack of irritant and phototoxic potential. The evaluations on 2D cells confirm the preferential cytotoxic effect of Rut on melanoma cells (IC50 value = 8.601 µM, nuclear fragmentation) compared to normal keratinocytes. Our data suggest that the proniosomal gel is a promising drug carrier for Rut in the management and prevention of skin disorders
    corecore