54 research outputs found

    The role of 5-arylalkylamino- and 5-piperazino- moieties on the 7-aminopyrazolo[4,3-d]pyrimidine core in affecting adenosine A1 and A2A receptor affinity and selectivity profiles

    Get PDF
    New 7-amino-2-phenylpyrazolo[4,3-d]pyrimidine derivatives, substituted at the 5-position with aryl(alkyl)amino- and 4-substituted-piperazin-1-yl- moieties, were synthesized with the aim of targeting human (h) adenosine A1 and/or A2A receptor subtypes. On the whole, the novel derivatives 1-24 shared scarce or no affinities for the off-target hA2B and hA3 ARs. The 5-(4-hydroxyphenethylamino)- derivative 12 showed both good affinity (Ki = 150 nM) and the best selectivity for the hA2A AR while the 5-benzylamino-substituted 5 displayed the best combined hA2A (Ki = 123 nM) and A1 AR affinity (Ki = 25 nM). The 5-phenethylamino moiety (compound 6) achieved nanomolar affinity (Ki = 11 nM) and good selectivity for the hA1 AR. The 5-(N4-substituted-piperazin-1-yl) derivatives 15-24 bind the hA1 AR subtype with affinities falling in the high nanomolar range. A structure-based molecular modeling study was conducted to rationalize the experimental binding data from a molecular point of view using both molecular docking studies and Interaction Energy Fingerprints (IEFs) analysis.[Formula: see text]

    Special Issue “Adenosine Receptors as Attractive Targets in Human Diseases”

    Get PDF
    The idea of promoting this Special Issue arises from the desire to witness the multidisciplinary efforts that are currently in progress to provide new insights into the pathophysiological role of adenosine [...

    The identification of the 2-phenylphthalazin-1(2H)-one scaffold as a new decorable core skeleton for the design of potent and selective human A3 adenosine receptor antagonists.

    Get PDF
    Following a molecular simplification approach, we have identified the 2-phenylphthalazin-1(2H)-one (PHTZ) ring system as a new decorable core skeleton for the design of novel hA(3) adenosine receptor (AR) antagonists. Interest for this new series was driven by the structural similarity between the PHTZ skeleton and both the 2-aryl-1,2,4-triazolo[4,3-a]quinoxalin-1-one (TQX) and the 4-carboxamido-quinazoline (QZ) scaffolds extensively investigated in our previously reported studies. Our attention was focused at position 4 of the phthalazine nucleus where different amido and ureido moieties were introduced (compounds 2-20). Some of the new PHTZ compounds showed high hA(3) AR affinity and selectivity, the 2,5-dimethoxyphenylphthalazin-1(2H)-one 18 being the most potent and selective hA(3) AR antagonist among this series (K(i) = 0.776 nM; hA(1)/hA(3) and hA(2A)/hA(3) > 12000). Molecular docking studies on the PHTZ derivatives revealed for these compounds a binding mode similar to that of the previously reported TQX and QZ series, as was expected from the simplification approach

    Inhibition of A2A Adenosine Receptor Signaling in Cancer Cells Proliferation by the Novel Antagonist TP455

    Get PDF
    Several evidences indicate that the ubiquitous nucleoside adenosine, acting through A1, A2A, A2B, and A3 receptor (AR) subtypes, plays crucial roles in tumor development. Adenosine has contrasting effects on cell proliferation depending on the engagement of different receptor subtypes in various tumors. The involvement of A2AARs in human A375 melanoma, as well as in human A549 lung and rat MRMT1 breast carcinoma proliferation has been evaluated in view of the availability of a novel A2AAR antagonist, with high affinity and selectivity, named as 2-(2-furanyl)-N5-(2-methoxybenzyl)[1,3]thiazolo[5,4-d]pyrimidine-5,7-diammine (TP455). Specifically, the signaling pathways triggered in the cancer cells of different origin and the antagonist effect of TP455 were investigated. The A2AAR protein expression was evaluated through receptor binding assays. Furthermore, the effect of A2AAR activation on cell proliferation at 24, 48 and 72 hours was studied. The selective A2AAR agonist 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS21680), concentration-dependently induced cell proliferation in A375, A549, and MRMT1 cancer cells and the effect was potently antagonized by the A2AAR antagonist TP455, as well as by the reference A2AAR blocker 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM241385). As for the signaling pathway recruited in this response we demonstrated that, by using the specific inhibitors of signal transduction pathways, the effect of A2AAR stimulation was induced through phospholipase C (PLC) and protein kinase C-delta (PKC-δ). In addition, we evaluated, through the AlphaScreen SureFire phospho(p) protein assay, the kinases enrolled by A2AAR to stimulate cell proliferation and we found the involvement of protein kinase B (AKT), extracellular regulated kinases (ERK1/2), and c-Jun N-terminal kinases (JNKs). Indeed, we demonstrated that the CGS21680 stimulatory effect on kinases was strongly reduced in the presence of the new potent compound TP455, as well as by ZM241385, confirming the role of the A2AAR. In conclusion, the A2AAR activation stimulates proliferation of A375, A549, and MRMT1 cancer cells and importantly TP455 reveals its capability to counteract this effect, suggesting selective A2AAR antagonists as potential new therapeutics
    • …
    corecore