227 research outputs found

    Accuracy of circular polarization as a measure of spin polarization in quantum dot qubits

    Full text link
    A quantum dot spin LED provides a test of carrier spin injection into a qubit, as well as a means of analyzing carrier spin injection in general and local spin polarization. The polarization of the observed light is, however, significantly influenced by the dot geometry so the spin may be more polarized than the emitted light would naively suggest. We have calculated carrier polarization-dependent optical matrix elements using 8-band strain-dependent k.p theory for InAs/GaAs self-assembled quantum dots (SAQDs) for electron and hole spin injection into a range of quantum dot sizes and shapes, and for arbitrary emission directions. The observed circular polarization does not depend on whether the injected spin-polarized carriers are electrons or holes, but is strongly influenced by the SAQD geometry and emission direction. Calculations for typical SAQD geometries with emission along [110] show light that is only ~5% circularly polarized for spin states that are 100% polarized along [110]. Therefore observed polarizations [Chye et al. PRB 66, 201301(R)] of ~1% imply a spin polarization within the dot of ~20%. We also find that measuring along the growth direction gives near unity conversion of spin to photon polarization, and is the least sensitive to uncertainties in SAQD geometry.Comment: 4 pages, 6 figure

    Strong spin relaxation length dependence on electric field gradients

    Full text link
    We discuss the influence of electrical effects on spin transport, and in particular the propagation and relaxation of spin polarized electrons in the presence of inhomogeneous electric fields. We show that the spin relaxation length strongly depends on electric field gradients, and that significant suppression of electron spin polarization can occur as a result thereof. A discussion in terms of a drift-diffusion picture, and self-consistent numerical calculations based on a Boltzmann-Poisson approach shows that the spin relaxation length in fact can be of the order of the charge screening length.Comment: 4 pages, 3 figures, to be presented at PASPSI
    • …
    corecore