3 research outputs found

    Domains involved in the in vivo function and oligomerization of apical growth determinant DivIVA in Streptomyces coelicolor

    No full text
    The coiled-coil protein DivIVA is a determinant of apical growth and hyphal branching in Streptomyces coelicolor. We have investigated the properties of this protein and the involvement of different domains in its essential function and subcellular targeting. In S. coelicolor cell extracts, DivIVA was present as large oligomeric complexes that were not strongly membrane associated. The purified protein could self-assemble into extensive protein filaments in vitro. Two large and conspicuous segments in the amino acid sequence of streptomycete DivIVAs not present in other homologs, an internal PQG-rich segment and a carboxy-terminal extension, are shown to be dispensable for the essential function in S. coelicolor. Instead, the highly conserved amino-terminal of 22 amino acids was required and affected establishment of new DivIVA foci and hyphal branches, and an essential coiled-coil domain affected oligomerization of the protein

    DivIVA uses an N-terminal conserved region and two coiled-coil domains to localize and sustain the polar growth in Corynebacterium glutamicum

    No full text
    Corynebacterium glutamicum is a rod-shaped actinomycete with a distinct model of peptidoglycan synthesis during cell elongation, which takes place at the cell poles and is sustained by the essential protein DivIVA(CG) (C. glutamicum DivIVA). This protein contains a short conserved N-terminal domain and two coiled-coil regions: CC1 and CC2. Domain deletions and chimeric versions of DivIVA were used to functionally characterize the three domains, and all three were found to be essential for proper DivIVA(CG) function. However, in the presence of the N-terminal domain from DivIVA(CG), either of the two coiled-coil domains of DivIVA(CG) could be replaced by the equivalent coiled-coil domain of Bacillus subtilis DivIVA (DivIVA(BS)) without affecting the function of the original DivIVA(CG), and more than one domain had to be exchanged to lose function. Although no single domain was sufficient for subcellular localization or function, CC1 was mainly implicated in stimulating polar growth and CC2 in targeting to DivIVA(CG) assemblies at the cell poles in C. glutamicum
    corecore