522 research outputs found

    The Hearkening Eye

    Get PDF
    Hildegarde Flanner had lived in what she called the “Western Earth” for fifty years when this collection was published in 1979. She began writing in the nineteen twenties and states in her introduction, “It was not necessary to go to Paris to write poetry.” Her verse is replete with the cadences and landscape of the West. Flanner’s poetry has both urban and contemporary themes, but its main emphasis lies with Earth—cicadas, valley weeds, sassafras and Judas trees. Flanner’s imagery takes the reader beyond the surface of description. Her rhymes take a closer view that nudges the reader into the realm of the metaphysical

    Trade Marks - Unfair Competition - Right of Privacy

    Get PDF

    Trade Marks - Unfair Competition - Right of Privacy

    Get PDF

    Multidecadal Variability in Surface Albedo Feedback Across CMIP5 Models

    Full text link
    Previous studies quantify surface albedo feedback (SAF) in climate change, but few assess its variability on decadal time scales. Using the Coupled Model Intercomparison Project Version 5 (CMIP5) multimodel ensemble data set, we calculate time evolving SAF in multiple decades from surface albedo and temperature linear regressions. Results are meaningful when temperature change exceeds 0.5 K. Decadal‐scale SAF is strongly correlated with century‐scale SAF during the 21st century. Throughout the 21st century, multimodel ensemble mean SAF increases from 0.37 to 0.42 W m−2 K−1. These results suggest that models’ mean decadal‐scale SAFs are good estimates of their century‐scale SAFs if there is at least 0.5 K temperature change. Persistent SAF into the late 21st century indicates ongoing capacity for Arctic albedo decline despite there being less sea ice. If the CMIP5 multimodel ensemble results are representative of the Earth, we cannot expect decreasing Arctic sea ice extent to suppress SAF in the 21st century.Key PointsPeriods with global warming of at least 0.5 K provide reasonable estimates of surface albedo feedbackModels’ 21st century surface albedo feedbacks are strongly correlated with their mean decadal‐scale feedbacksSixteen CMIP5 models show significant strengthening in decadal‐scale surface albedo feedback throughout the 21st centuryPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142955/1/grl56989.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142955/2/grl56989_am.pd

    Sensitivity of modeled far‐IR radiation budgets in polar continents to treatments of snow surface and ice cloud radiative properties

    Full text link
    While most general circulation models assume spectrally independent surface emissivity and nonscattering clouds in their longwave radiation treatment, spectral variation of the index of refraction of ice indicates that in the far IR, snow surface emissivity can vary considerably and ice clouds can cause nonnegligible scattering. These effects are more important for high‐elevation polar continents where the dry and cold atmosphere is not opaque in the far IR. We carry out sensitivity studies to show that in a winter month over the Antarctic Plateau including snow surface spectral emissivity and ice cloud scattering in radiative transfer calculation reduces net upward far‐IR flux at both top of atmosphere and surface. The magnitudes of such reductions in monthly mean all‐sky far‐IR flux range from 0.72 to 1.47 Wm −2 , with comparable contributions from the cloud scattering and the surface spectral emissivity. The reduction is also sensitive to sizes of both snow grains and cloud particles. Key Points Ice cloud and snow surface radiative properties vary considerably in the far IR Snow surface emissivity and cloud scattering affect far IR comparably Even for far‐IR radiation alone, the impact is nonnegligiblePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109339/1/Auxiliary_material_Aug27.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109339/2/grl52118.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/109339/3/TableS01.pd

    Diagnosing shortwave cryosphere radiative effect and its 21st century evolution in CESM

    Full text link
    We incorporate a new diagnostic called the cryosphere radiative effect (CrRE), the instantaneous influence of surface snow and sea ice on the top‐of‐model solar energy budget, into two released versions of the Community Earth System Model (CESM1 and CCSM4). CrRE offers a more climatically relevant metric of the cryospheric state than snow and sea ice extent and is influenced by factors such as the seasonal cycle of insolation, cloud masking, and vegetation cover. We evaluate CrRE during the late 20th century and over the 21st century, specifically diagnosing the nature of CrRE contributions from terrestrial and marine sources. The radiative influence of ice sheets and glaciers is not considered, but snow on top of them is accounted for. Present‐day global CrRE in both models is −3.8 W m −2 , with a boreal component (−4.2 to −4.6 W m −2 ) that compares well with observationally derived estimates (−3.9 to −4.6 W m −2 ). Similar present‐day CrRE in the two model versions results from compensating differences in cloud masking and sea ice extent. Over the 21st century, radiative forcing in the Representative Concentration Pathway (RCP) 8.5 scenario causes reduced boreal sea ice cover, austral sea ice cover, and boreal snow cover, which all contribute roughly equally to enhancing global absorbed shortwave radiation by 1.4–1.8 Wm −2 . Twenty‐first century RCP8.5 global cryospheric albedo feedback are +0.41 and +0.45 W/m 2 /K, indicating that the two models exhibit similar temperature‐normalized CrRE change. Key Points We implement the first GCM diagnostic calculation of cryosphere radiative effect Global average CrRE from snow and sea ice is −4 W m −2 in present‐day simulations Earth absorbs 1.6 W m −2 more insolation from cryosphere loss by 2099 in RCP8.5Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106707/1/jgrd51156.pd

    Climate Response to Negative Greenhouse Gas Radiative Forcing in Polar Winter

    Full text link
    Greenhouse gas (GHG) additions to Earth’s atmosphere initially reduce global outgoing longwave radiation, thereby warming the planet. In select environments with temperature inversions, however, increased GHG concentrations can actually increase local outgoing longwave radiation. Negative top of atmosphere and effective radiative forcing (ERF) from this situation give the impression that local surface temperatures could cool in response to GHG increases. Here we consider an extreme scenario in which GHG concentrations are increased only within the warmest layers of winter near‐surface inversions of the Arctic and Antarctic. We find, using a fully coupled Earth system model, that the underlying surface warms despite the GHG addition exerting negative ERF and cooling the troposphere in the vicinity of the GHG increase. This unique radiative forcing and thermal response is facilitated by the high stability of the polar winter atmosphere, which inhibit thermal mixing and amplify the impact of surface radiative forcing on surface temperature. These findings also suggest that strategies to exploit negative ERF via injections of short‐lived GHGs into inversion layers would likely be unsuccessful in cooling the planetary surface.Key PointsIncreased GHG concentrations in polar inversion layers cause negative top of atmosphere instantaneous and effective radiative forcingPolar and global surface temperatures warm despite this negative radiative forcingSurface warming and tropospheric cooling result from high stability and increased surface downwelling longwave fluxPeer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142965/1/grl56994_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142965/2/grl56994.pd

    Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

    Get PDF
    The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO<sub>2</sub> and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. <br><br> Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5–25 W m<sup>−2</sup> during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 °C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO<sub>2</sub> increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO<sub>2</sub> increase during April–July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. <br><br> The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring aerosols are transported by southwesterly, causing some particles to reach higher altitude and deposit to the snowpack over the TP. While BC and Organic Matter (OM) in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above through sensible heat flux. Both effects enhance the upward motion of air and spur deep convection along the TP during the pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO<sub>2</sub> increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier – a near-zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. <br><br> The snow impurity effects reported in this study likely represent some upper limits as snowpack is remarkably overestimated over the TP due to excessive precipitation. Improving the simulation of precipitation and snowpack will be important for improved estimates of the effects of snowpack pollution in future work
    • 

    corecore