2 research outputs found
Spectral Analysis of Multi-dimensional Self-similar Markov Processes
In this paper we consider a discrete scale invariant (DSI) process with scale . We consider to have some fix number of
observations in every scale, say , and to get our samples at discrete points
where is obtained by the equality
and . So we provide a discrete time scale
invariant (DT-SI) process with parameter space . We find the spectral representation of the covariance function of
such DT-SI process. By providing harmonic like representation of
multi-dimensional self-similar processes, spectral density function of them are
presented. We assume that the process is also Markov
in the wide sense and provide a discrete time scale invariant Markov (DT-SIM)
process with the above scheme of sampling. We present an example of DT-SIM
process, simple Brownian motion, by the above sampling scheme and verify our
results. Finally we find the spectral density matrix of such DT-SIM process and
show that its associated -dimensional self-similar Markov process is fully
specified by where is
the covariance function of th and th observations of the process.Comment: 16 page