61 research outputs found

    Uncoupling protein-3 as a molecular determinant of the action of 3,5,3′-triiodothyronine on energy metabolism

    Get PDF
    Thyroid hormones are known to stimulate thermogenesis in rodents by exerting a permissive effect on norepinephrine that affects uncoupling protein-1 (UCP1) expression in brown adipose tissue (BAT). The aim of this study was to identify new targets of the thermogenic effects of T3 in tissues other than the BAT, such as skeletal muscle. In β1/β2/β3-adrenoceptor knockout (β-less) mice, that are dramatically cold intolerant, a normal body temperature was maintained throughout 48h of cold exposure by T3 administration. In these mice, BAT UCP1 protein expression was not modified either by cold exposure or by T3 administration. To test the possibility that T3 might act via muscle uncoupling protein-3 (UCP3), an UCP3 knockout (KO) model was used. This model exhibited a normal phenotype except that, upon T3 administration, stimulated oxygen consumption of the UCP3KO mice was significantly lower by 6% than that of the wild-type (WT) mice. This difference was observed only during the dark period (between 7.00p.m. and 7.00a.m.), i.e. when the mice are the most active at consuming food. Therefore, UCP3 might participate in the correction by T3 of the dramatic cold intolerance of the β-less mice. These results reactivate the idea that UCP3 might play a role in the control of energy balanc

    Genotype determines Arbutus unedo L. physiological and metabolomic responses to drought and recovery

    Get PDF
    Strawberry tree (Arbutus unedo) is a small resilient species with a circum-Mediterranean distribution, high ecological relevance in southern European forests and with several economical applications. As most orchards are usually installed on marginal lands where plants usually face severe drought, selecting plants that can better cope with water restriction is critical, and a better understanding of the tolerance mechanisms is required. Strawberry tree plants under drought follow a typical isohydric strategy, by limiting transpiration through stomata closure. However, the contribution of genotype and its bio-geographic origin on plant performance needs clarification, as well as the involvement of a specific metabolic reactions associated with the mechanical response. To test this hypothesis, several eco-physiological and biochemical parameters were assessed on different genotypes, and the metabolic profiles studied, including important stress-related phytohormones, on plants under different water regimes (plants watered to 70% and 18% field capacity) and a recovery assay. A contrasting drought tolerance was found in plants from different genotypes, associated with physiological and metabolic responses. Metabolomics revealed more than 500 metabolic features were differentially accumulated, including abscisic and salicylic acids, for the genotype with better performance under drought (A4). This genotype also recovered faster when the imposed stress was interrupted, thus indicating the relevance of metabolic adaptation under water deficit conditions. By correlating carbon assimilation with identified metabolites, some proved to be satisfactory predictors of plant performance under drought and might be used for marker assisted breeding. Therefore, our study proves the importance of genotype as a major selection criterion of resistant plants to drought and provides empirical knowledge of the metabolic response involved. We also hypothesized the involvement of phenolics on response mechanisms under drought, which is worth to be explored to shed light on the metabolic pathways involved in plant response to water stress

    Impaired cell growth under ammonium stress explained by modeling the energy cost of vacuole expansion in tomato leaves

    Get PDF
    Ammonium (NH4+)-based fertilization efficiently mitigates the adverse effects of nitrogen fertilization on the environment. However, high concentrations of soil NH4+ provoke growth inhibition, partly caused by the reduction of cell enlargement and associated with modifications of cell composition, such as an increase of sugars and a decrease in organic acids. Cell expansion depends largely on the osmotic-driven enlargement of the vacuole. However, the involvement of subcellular compartmentation in the adaptation of plants to ammonium nutrition has received little attention, until now. To investigate this, tomato (Solanum lycopersicum) plants were cultivated under nitrate and ammonium nutrition and the fourth leaf was harvested at seven developmental stages. The vacuolar expansion was monitored and metabolites and inorganic ion contents, together with intracellular pH, were determined. A data-constrained model was constructed to estimate subcellular concentrations of major metabolites and ions. It was first validated at the three latter developmental stages by comparison with subcellular concentrations obtained experimentally using non-aqueous fractionation. Then, the model was used to estimate the subcellular concentrations at the seven developmental stages and the net vacuolar uptake of solutes along the developmental series. Our results showed ammonium nutrition provokes an acidification of the vacuole and a reduction in the flux of solutes into the vacuoles. Overall, analysis of the subcellular compartmentation reveals a mechanism behind leaf growth inhibition under ammonium stress linked to the higher energy cost of vacuole expansion, as a result of alterations in pH, the inhibition of glycolysis routes and the depletion of organic acids.TP benefited from a cotutelle PhD (University of Bordeaux and University of the Basque Country) and thanks the University of the Basque Country (UPV/EHU, Spain) for his PhD grant during the execution of this work. This research was financially supported by the Basque Government (IT-932-16) and the Spanish Government (BIO2017-84035-R co-funded by Fondo Europeo para el Desarrollo Regional [FEDER]). Analytics were supported by MetaboHUB (ANR-11-INBS-0010) and PHENOME (ANR-11-INBS-0012) projects. Technical support was provided by Cedric Cassan, Ana Renovales and Mandy Bordas. The authors also thank SGIker (UPV/EHU, FEDER, EU) for the technical and human support provided

    Aux sources médiévales d'un droit de l'urbanisme : le cas de Limoges

    Full text link
    J. Hoareau-Dodinau et P. TexierInternational audienc

    Le pouvoir municipal en Limousin au bas Moyen Ă‚ge

    Full text link
    M. Cassan, J.-L. LemaitreInternational audienc
    • …
    corecore