114 research outputs found

    Direct Fidelity Estimation from Few Pauli Measurements

    Get PDF
    We describe a simple method for certifying that an experimental device prepares a desired quantum state ρ. Our method is applicable to any pure state ρ, and it provides an estimate of the fidelity between ρ and the actual (arbitrary) state in the lab, up to a constant additive error. The method requires measuring only a constant number of Pauli expectation values, selected at random according to an importance-weighting rule. Our method is faster than full tomography by a factor of d, the dimension of the state space, and extends easily and naturally to quantum channels

    The Optical Frequency Comb as a One-Way Quantum Computer

    Full text link
    In the one-way model of quantum computing, quantum algorithms are implemented using only measurements on an entangled initial state. Much of the hard work is done up-front when creating this universal resource, known as a cluster state, on which the measurements are made. Here we detail a new proposal for a scalable method of creating cluster states using only a single multimode optical parametric oscillator (OPO). The method generates a continuous-variable cluster state that is universal for quantum computation and encoded in the quadratures of the optical frequency comb of the OPO. This work expands on the presentation in Phys. Rev. Lett. 101, 130501 (2008).Comment: 20 pages, 8 figures. v2 corrects minor error in published versio
    corecore