741 research outputs found
Wormholes, Gamma Ray Bursts and the Amount of Negative Mass in the Universe
In this essay, we assume that negative mass objects can exist in the
extragalactic space and analyze the consequences of their microlensing on light
from distant Active Galactic Nuclei. We find that such events have very similar
features to some observed Gamma Ray Bursts and use recent satellite data to set
an upper bound to the amount of negative mass in the universe.Comment: Essay awarded ``Honorable Mention'' in the Gravity Foundation
Research Awards, 199
Global embedding of the Kerr black hole event horizon into hyperbolic 3-space
An explicit global and unique isometric embedding into hyperbolic 3-space,
H^3, of an axi-symmetric 2-surface with Gaussian curvature bounded below is
given. In particular, this allows the embedding into H^3 of surfaces of
revolution having negative, but finite, Gaussian curvature at smooth fixed
points of the U(1) isometry. As an example, we exhibit the global embedding of
the Kerr-Newman event horizon into H^3, for arbitrary values of the angular
momentum. For this example, considering a quotient of H^3 by the Picard group,
we show that the hyperbolic embedding fits in a fundamental domain of the group
up to a slightly larger value of the angular momentum than the limit for which
a global embedding into Euclidean 3-space is possible. An embedding of the
double-Kerr event horizon is also presented, as an example of an embedding
which cannot be made global.Comment: 16 pages, 13 figure
Meson Mass Splittings in the Nonrelativistic Model
Mass splittings between isodoublet meson pairs and between and
mesons of the same valence quark content are computed in a detailed
nonrelativistic model. The field theoretic expressions for such splittings are
shown to reduce to kinematic and Breit-Fermi terms in the nonrelativistic
limit. Algebraic results thus obtained are applied to the specific case of the
linear-plus-Coulomb potential, with resultant numbers compared to experiment.Comment: 29 pages with 2 tables and 4 figures, LBL-32872 and UCB-PTH-92/3
Bohr-Sommerfeld quantization and meson spectroscopy
We use the Bohr-Sommerfeld quantization approach in the context of
constituent quark models. This method provides, for the Cornell potential,
analytical formulae for the energy spectra which closely approximate numerical
exact calculations performed with the Schrodinger or the spinless Salpeter
equations. The Bohr-Sommerfeld quantization procedure can also be used to
calculate other observables such as r.m.s. radius or wave function at the
origin. Asymptotic dependence of these observables on quantum numbers are also
obtained in the case of potentials which behave asymptotically as a power-law.
We discuss the constraints imposed by these formulae on the dynamics of the
quark-antiquark interaction.Comment: 13 page
Axially symmetric rotating traversable wormholes
This paper generalizes the static and spherically symmetric traversable
wormhole geometry to a rotating axially symmetric one with a time-dependent
angular velocity by means of an exact solution. It was found that the violation
of the weak energy condition, although unavoidable, is considerably less severe
than in the static spherically symmetric case. The radial tidal constraint is
more easily met due to the rotation. Similar improvements are seen in one of
the lateral tidal constraints. The magnitude of the angular velocity may have
little effect on the weak energy condition violation for an axially symmetric
wormhole. For a spherically symmetric one, however, the violation becomes less
severe with increasing angular velocity. The time rate of change of the angular
velocity, on the other hand, was found to have no effect at all. Finally, the
angular velocity must depend only on the radial coordinate, confirming an
earlier result.Comment: 17 pages, AMSTe
Movements of radio-tagged manatees in Tampa Bay and along Florida’s west coast, 1991–1996
Manatees wintering in Tampa Bay, Florida, were captured and fitted with satellite- and radio-telemetry equipment during a research project conducted from 1991 to 1996. Forty-four manatees were tagged after their capture in Tampa Bay; an additional 15 animals were tagged at other west coast locations. Locations of individual animals were estimated via satellite up to eight times per day, and observations of manatee locations were made in the field one or more times per week. These data were entered into a relational database and converted to a format accessible as points within a geographic information system (GIS). Seasonal densities of satellite locations were mapped for 33 manatees tagged in Tampa Bay. Within the bay, manatees aggregated at or near warm-water locations during winter. In other seasons, manatee density was highest in areas that had abundant sea grass and were close to fresh-water sources. Sequential data points for individual manatees were transformed into probable travel routes by using a GIS-based cost-path analysis. A map was created for each tagged manatee depicting estimated travel paths, and detailed descriptive information summarized major movements, tagging history, and physical characteristics. The travel patterns of male manatees were characterized by almost continual movement, often along predictable routes or circuits. Most males larger than 265 cm ranged 100 km or more away from Tampa Bay during non-winter months whereas smaller males remained in or near the bay. As males matured, their travel ranges appeared to expand. Female manatees used two general movement patterns. Small females and females with calves would use specific areas within a day’s travel of the warm-water sources for extended periods before moving to similar nearby areas for protracted stays. Females without calves and females longer than 330 cm with calves added long migrations between areas chosen for foraging.The ranges of some females extended south to Charlotte Harbor,the Caloosahatchee River,and the Everglades. Two tagged females traveled from Florida’s west coast to the east coast: one traveled south around the peninsula, and the other apparently moved east through Lake Okeechobee and the lock system
Semi-Relativistic Hamiltonians of Apparently Nonrelativistic Form
We construct effective Hamiltonians which despite their apparently
nonrelativistic form incorporate relativistic effects by involving parameters
which depend on the relevant momentum. For some potentials the corresponding
energy eigenvalues may be determined analytically. Applied to two-particle
bound states, it turns out that in this way a nonrelativistic treatment may
indeed be able to simulate relativistic effects. Within the framework of hadron
spectroscopy, this lucky circumstance may be an explanation for the sometimes
extremely good predictions of nonrelativistic potential models even in
relativistic regions.Comment: 20 pages, LaTeX, no figure
Statistical mechanics of secondary structures formed by random RNA sequences
The formation of secondary structures by a random RNA sequence is studied as
a model system for the sequence-structure problem omnipresent in biopolymers.
Several toy energy models are introduced to allow detailed analytical and
numerical studies. First, a two-replica calculation is performed. By mapping
the two-replica problem to the denaturation of a single homogeneous RNA in
6-dimensional embedding space, we show that sequence disorder is perturbatively
irrelevant, i.e., an RNA molecule with weak sequence disorder is in a molten
phase where many secondary structures with comparable total energy coexist. A
numerical study of various models at high temperature reproduces behaviors
characteristic of the molten phase. On the other hand, a scaling argument based
on the extremal statistics of rare regions can be constructed to show that the
low temperature phase is unstable to sequence disorder. We performed a detailed
numerical study of the low temperature phase using the droplet theory as a
guide, and characterized the statistics of large-scale, low-energy excitations
of the secondary structures from the ground state structure. We find the
excitation energy to grow very slowly (i.e., logarithmically) with the length
scale of the excitation, suggesting the existence of a marginal glass phase.
The transition between the low temperature glass phase and the high temperature
molten phase is also characterized numerically. It is revealed by a change in
the coefficient of the logarithmic excitation energy, from being disorder
dominated to entropy dominated.Comment: 24 pages, 16 figure
Ground state energy in a wormhole space-time
The ground state energy of the massive scalar field with non-conformal
coupling on the short-throat flat-space wormhole background is calculated
by using zeta renormalization approach. We discuss the renormalization and
relevant heat kernel coefficients in detail. We show that the stable
configuration of wormholes can exist for . In particular case of
massive conformal scalar field with , the radius of throat of stable
wormhole . The self-consistent wormhole has radius of throat
and mass of scalar boson ( and
are the Planck length and mass, respectively).Comment: revtex, 18 pages, 3 eps figures. accepted in Phys.Rev.
- …