218 research outputs found

    Dust in the diffuse emission of the galactic plane - The Herschel/Spitzer SED fitting

    Get PDF
    The first Herschel Hi-Gal images of the galactic plane unveil the far-infrared diffuse emission of the interstellar medium with an unprecedented angular resolution and sensitivity. In this paper, we present the first analysis of these data in combination with that of Spitzer Glimpse & Mipsgal. We selected a relatively diffuse and low excitation region of the l~59\,^{\circ} Hi-Gal Science Demonstration Phase field to perform a pixel by pixel fitting of the 8 to 500 microns SED using the DustEM dust emission model. We derived maps of the Very Small Grains (VSG) and PAH abundances from the model. Our analysis allows us to illustrate that the Aromatic Infrared Bands (AIB) intensity does not trace necessarily the PAH abundance but rather the product of "abundance x column density x intensity of the exciting radiation field". We show that the spatial structure of PACS70microns map resembles the shorter wavelengths (e.g. IRAC8microns) maps, because they trace both the intensity of exciting radiation field and column density. We also show that the modeled VSG contribution to PACS70microns (PACS160microns) band intensity can be up to 50% (7%). The interpretation of diffuse emission spectra at these wavelengths must take stochastically heated particles into account. Finally, this preliminary study emphasizes the potential of analyzing the full dust SED sampled by Herschel and Spitzer data, with a physical dust model (DustEM) to reach the properties of the dust at simultaneously large and small scales.Comment: accepted for publication in ApJ

    Spitzer/IRS investigation of MIPSGAL 24 microns compact bubbles

    Get PDF
    The MIPSGAL 24 μ\mum Galactic Plane Survey has revealed more than 400 compact-extended objects. Less than 15% of these MIPSGAL bubbles (MBs) are known and identified as evolved stars. We present Spitzer observations of 4 MBs obtained with the InfraRed Spectrograph to determine the origin of the mid-IR emission. We model the mid-IR gas lines and the dust emission to infer physical conditions within the MBs and consequently their nature. Two MBs show a dust-poor spectrum dominated by highly ionized gas lines of [\ion{O}{4}], [\ion{Ne}{3}], [\ion{Ne}{5}], [\ion{S}{3}] and [\ion{S}{4}]. We identify them as planetary nebulae with a density of a few 103 cm3^3\ \rm{cm^{-3}} and a central white dwarf of 200,000\gtrsim 200,000 K. The mid-IR emission of the two other MBs is dominated by a dust continuum and lower-excitation lines. Both of them show a central source in the near-IR (2MASS and IRAC) broadband images. The first dust-rich MB matches a Wolf-Rayet star of 60,000\sim 60,000 K at 7.5 kpc with dust components of 170\sim170 and 1750\sim1750 K. Its mass is about $10^{-3}\ \rm{M_\odot}anditsmasslossisabout and its mass loss is about 10^{-6}\ \rm{M_\odot/yr}. The second dust-rich MB has recently been suggested as a Be/B[e]/LBV candidate. The gas lines of [\ion{Fe}{2}] as well as hot continuum components (\sim300and and \sim1250K)arisefromtheinsideoftheMBwhileitsoutershellemitsacolderdustcomponent( K) arise from the inside of the MB while its outer shell emits a colder dust component (\sim75K).ThedistancetotheMBremainshighlyuncertain.Itsmassisabout K). The distance to the MB remains highly uncertain. Its mass is about 10^{-3}\ \rm{M_\odot}anditsmasslossisabout and its mass loss is about 10^{-5}\ \rm{M_\odot/yr}$.Comment: accepted for publication in Ap

    Modeling and budgeting fiber injection efficiency for the Maunakea spectroscopic explorer (MSE)

    Full text link
    The Maunakea Spectroscopic Explorer (MSE) will each year obtain millions of spectra in the optical to near-infrared, at low (R ~ 3,000) to high (R ~ 40,000) spectral resolution by observing >4,000 spectra per pointing via a highly multiplexed fiber-fed system. Key science programs for MSE include black hole reverberation mapping, stellar population analysis of faint galaxies at high redshift, and sub-km/s velocity accuracy for stellar astrophysics. One key metric of the success of MSE will be its survey speed, i.e. how many spectra of good signal-to-noise ratio will MSE be able to obtain every night and every year. The survey speed is directly linked to the allocation efficiency - how many fibers in the focal surface can be allocated to targets - and to the injection efficiency - what fraction of light from a target can enter the fiber at the focal surface. In this paper we focus on the injection efficiency and how to optimize it to increase the signal-to-noise ratio of targets observed in sky dominated conditions. The injection efficiency depends on the size of the fiber and requires highly precise, repeatable and stable positioning of the fiber in the focal surface. We present the allocation budget used for Conceptual Design Review and the modeling that allows to estimate the injection efficiency, which is just one part necessary to meet the science requirements on sensitivities.Comment: Proceedings of SPIE Astronomical Telescopes + Instrumentation 2018; Modeling, Systems Engineering, and Project Management for Astronomy VII

    Proper Motions of Young Stellar Outflows in the Mid-Infrared with Spitzer. II. HH 377/Cep E

    Get PDF
    We have used multiple mid-infrared observations at 4.5 micron obtained with the Infrared Array Camera, of the compact (~1.4 arcmin) young stellar bipolar outflow Cep E to measure the proper motion of its brightest condensations. The images span a period of ~6 yr and have been reprocessed to achieve a higher angular resolution (~0.8 arcsec) than their normal beam (2 arcsec). We found that for a distance of 730 pc, the tangential velocities of the North and South outflow lobes are 62+/-29 and 94+/-6 km/s respectively, and moving away from the central source roughly along the major axis of the flow. A simple 3D hydrodynamical simulation of the H2 gas in a precessing outflow supports this idea. Observations and model confirm that the molecular Hydrogen gas, traced by the pure rotational transitions, moves at highly supersonic velocities without being dissociated. This suggests either a very efficient mechanism to reform H2 molecules along these shocks or the presence of some other mechanism (e.g. strong magnetic field) that shields the H2 gas.Comment: Accepted for publication in New Journal of Physics (Special Issue article

    Herschel Survey of the Palomar-Green QSOs at Low Redshift

    Get PDF
    We investigate the global cold dust properties of 85 nearby (z < 0.5) QSOs, chosen from the Palomar-Green sample of optically luminous quasars. We determine their infrared spectral energy distributions and estimate their rest-frame luminosities by combining Herschel data from 70 to 500 microns with near-infrared and mid-infrared measurements from the Two Micron All Sky Survey (2MASS) and the Wide-Field Infrared Survey Explorer (WISE). In most sources the far-infrared (FIR) emission can be attributed to thermally heated dust. Single temperature modified black body fits to the FIR photometry give an average dust temperature for the sample of 33~K, with a standard deviation of 8~K, and an average dust mass of 7E6 Solar Masses with a standard deviation of 9E6 Solar Masses. Estimates of star-formation that are based on the FIR continuum emission correlate with those based on the 11.3 microns PAH feature, however, the star-formation rates estimated from the FIR continuum are higher than those estimated from the 11.3 microns PAH emission. We attribute this result to a variety of factors including the possible destruction of the PAHs and that, in some sources, a fraction of the FIR originates from dust heated by the active galactic nucleus and by old stars.Comment: accepted for publication in ApJ
    corecore