20 research outputs found

    Impact on CYP19A1 activity by mutations in NADPH cytochrome P450 oxidoreductase.

    No full text
    Cytochrome P450 aromatase (CYP19A1), in human placenta metabolizes androgens to estrogens and uses reduced nicotinamide adenine dinucleotide phosphate through cytochrome P450 oxidoreductase (POR) for the energy requirements of its metabolic activities. Mutations in the human POR lead to congenital adrenal hyperplasia due to loss of activities of several steroid metabolizing enzymatic reactions conducted by the cytochrome P450 proteins located in the endoplasmic reticulum. Effect of POR mutations on different P450 activities depend on individual partner proteins. In this report we have studied the impact of mutations found in the POR on the enzymatic activity of CYP19A1. We expressed wild type as well mutant human POR proteins in bacteria and purified the recombinant proteins, which were then used in an in vitro reconstitution system in combination with CYP19A1 and lipids for enzymatic analysis. We found that several mutations as well as polymorphisms in human POR can cause reduction of CYP19A1 activity. This would affect metabolism of estrogens in people with variations of POR allele. The POR mutants Y181D and R616X were found to have no activity in supporting CYP19A1 reactions. The POR mutations Y607C and delF646 showed a loss of 60-90% activity and two polymorphic forms of POR, R316W and G413S showed similar to WT activity. One POR variant, Q153R had almost double the activity of WT. Loss of CYP19A1 activity may contribute to disordered steroidogenesis in female patients with POR mutations as well as in mothers with POR variants carrying a male child

    Introduction

    No full text

    In silico and functional studies reveal novel loss-of-function variants of SRD5A2, but no variants explaining excess 5α-reductase activity.

    No full text
    Androgens are steroid hormones essential for human male and female development. Steroid reductases 5α (SRD5As) are key enzymes in androgen biosynthesis. Mutations in the human SRD5A2 are known to cause loss-of-function and severe 46,XY undervirilization. Gain-of-function variants have been suggested in androgen excess syndromes, but have not been found so far. Therefore we searched for gain-of-function mutations in the human SRD5A2 gene which might explain hyperandrogenic disorders such as the polycystic ovary syndrome, premature adrenarche and prostate cancer. We screened databases for candidate variants and characterised them in silico with the help of a novel SRD5A2 model. We selected 9 coding SNPs (A49T, R50A, P106L, P106A, N122A, L167S, R168C, P173S, R227Q) that have not been described in manifesting individuals, and assessed their enzyme kinetic properties in HEK293 cells. SRD5A2 activity was assessed by conversion of testosterone (T), progesterone (Prog) and androstenedione (Δ4A) to their 5α-reduced metabolites. Variants R50A and P173S showed partial activity with substrates T (34% and 28%) and Δ4A (37% and 22%). With substrate Prog variants P106L, P106A, L167S and R168C in addition showed partial activity (15% to 64%). Functional testing of all other variants showed loss-of-function. As predicted in our in silico analysis, all coding SNPs affected enzyme activity, however none of them showed gain-of-function. Thus excess 5α-reductase activity might be rather regulated at the (post)-transcriptional and/or post-translational level. However through this work seven new coding SNPs were characterised which might be of clinical relevance. It is possible that individuals carrying these SNPs show a minor phenotype that is not yet identified

    How high-resolution techniques enable reliable steroid identification and quantification

    Get PDF
    Due to possible matrix interferences and artefact generation during sample preparation, careful method validation is required for quantitative bioanalytical methods, especially for analytes that are only present in low concentrations. Using the identification and quantification of progesterone metabolite in the urine of newborns as an example, we show how modern high-resolution instruments can be used to verify analyte assignment and avoid pitfalls commonly encountered by the use of low-resolution instruments

    P450 Oxidoreductase deficiency: Analysis of mutations and polymorphisms.

    No full text
    Cytochrome P450 oxidoreductase (POR) is required for metabolic reactions of steroid and drug metabolizing cytochrome P450 proteins located in endoplasmic reticulum. Mutations in POR cause a complex set of disorders resembling combined deficiencies of multiple steroid metabolizing enzymes. The P450 oxidoreductase deficiency (PORD) was first reported in patients with symptoms of defects in steroidogenic cytochrome P450 enzymes and ambiguous genitalia, and bone malformation features resembling Antley-Bixler syndrome. POR is now classified as a separate and rare form of congenital adrenal hyperplasia (CAH), which may cause disorder of sexual development (DSD). Since the initial description of PORD in 2004, a large number of POR mutations and polymorphisms have been described. In this report we have performed computational analysis of mutations and polymorphisms in POR linked to metabolism of steroids and xenobiotics and pathology of PORD from the reported cases. The mutations in POR that were identified in patients with disruption of steroidogenesis also have severe effects on cytochrome P450 proteins involved in metabolism of drugs. Different variations in POR show a range of diverse effects on different partner proteins that are often linked to the location of the particular variants. The variations in POR that cause defective binding of co-factors always have damaging effects on all partner proteins, while the mutations causing subtle structural changes may lead to altered interaction with partner proteins and the overall effect may be different for each individual partner. Computational analysis of available sequencing data and mutation analysis shows that Japanese (R457H), Caucasian (A287P) and Turkish (399-401) populations can be linked to unique founder mutations. Other mutations identified so far were identified as rare alleles or in single isolated reports. The common polymorphism of POR is the variant A503V which can be found in about 27% of alleles in general population but there are remarkable differences among different sub populations

    Vitamin D-Dependent Rickets Type 1 Caused by Mutations in CYP27B1 Affecting Protein Interactions With Adrenodoxin.

    No full text
    CONTEXT CYP27B1 converts 25-hydroxyvitamin D3 to active 1,25-dihydroxyvitamin D3, playing a vital role in calcium homeostasis and bone growth. Vitamin D-dependent rickets type 1 (VDDR-1) is a rare autosomal recessive disorder caused by mutations in CYP27B1. OBJECTIVE The objective of the study was an enzymatic and structural analysis of mutations in a patient with calcipenic rickets. Design, Setting, Patient, and Intervention: Two siblings presented with calcipenic rickets and normal 1,25-dihydroxyvitamin D3 levels. CYP27B1 gene analysis showed compound heterozygous mutations confirming VDDR-1. We studied wild-type CYP27B1 and mutations H441Y and R459L by computational homology modeling, molecular dynamics simulations, and functional studies using a luciferase assay. The patients were successfully treated with calcitriol. MAIN OUTCOME The main outcomes of the study were novel mutations leading to a severe loss of CYP27B1 activities for metabolism of 25-hydroxyvitamin D3. RESULTS Mitochondrial cytochrome P450s require adrenodoxin (FDX1) and adrenodoxin reductase. We created models of CYP27B1-FDX1 complex, which revealed negative effects of mutations H441Y and R459L. Upon structural analysis, near-identical folds, protein contact areas, and orientations of heme/iron-sulfur cluster suggested that both mutations may destabilize the CYP27B1-FDX1 complex by negating directional interactions with adrenodoxin. This system is highly sensitive to small local changes modulating the binding/dissociation of adrenodoxin, and electron-transporting efficiency might change with mutations at the surface. Functional assays confirmed this hypothesis and showed severe loss of activity of CYP27B1 by both mutations. CONCLUSIONS This is the first report of mutations in CYP27B1 causing VDDR-1 by affecting protein-protein interactions with FDX1 that results in reduced CYP27B1 activities. Detailed characterization of mutations in CYP27B1 is required for understanding the novel molecular mechanisms causing VDDR-1

    Broad phenotypes in heterozygous NR5A1 46,XY patients with a disorder of sex development: an oligogenic origin?

    No full text
    SF-1/NR5A1 is a transcriptional regulator of adrenal and gonadal development. NR5A1 disease-causing variants cause disorders of sex development (DSD) and adrenal failure, but most affected individuals show a broad DSD/reproductive phenotype only. Most NR5A1 variants show in vitro pathogenic effects, but not when tested in heterozygote state together with wild-type NR5A1 as usually seen in patients. Thus, the genotype-phenotype correlation for NR5A1 variants remains an unsolved question. We analyzed heterozygous 46,XY SF-1/NR5A1 patients by whole exome sequencing and used an algorithm for data analysis based on selected project-specific DSD- and SF-1-related genes. The variants detected were evaluated for their significance in literature, databases and checked in silico using webtools. We identified 19 potentially deleterious variants (one to seven per patient) in 18 genes in four 46,XY DSD subjects carrying heterozygous NR5A1 disease-causing variants. We constructed a scheme of all these hits within the landscape of currently known genes involved in male sex determination and differentiation. Our results suggest that the broad phenotype in these heterozygous NR5A1 46,XY DSD subjects may well be explained by an oligogenic mode of inheritance, in which multiple hits, individually non-deleterious, may contribute to a DSD phenotype unique to each heterozygous SF-1/NR5A1 individual
    corecore