28 research outputs found
Impact of avoidable mortality on mortality patterns in the Caribbean region, 1999-2014
Actualmente la muerte es un hecho inevitable, sin embargo, la
esperanza de vida ha cambiado de forma importante en el tiempo
y aún en nuestros días difiere ampliamente entre grupos humanos. El avance de la tecnología sanitaria ha permitido que ciertas
muertes puedan controlarse, postergarse o evitarse. Por ello, el
objetivo de este artículo es medir el impacto que tienen las causas
de muerte evitable, sobre las variables demográficas en la región
Caribe colombiana, 1999-2014. Para lograrlo, se utilizó el método
de eliminación hipotética de causas de muertes usando tablas de
vidas. Los resultados indican que si en el periodo de estudio se
hubiesen evitado algunas muertes a causa de enfermedades del sistema circulatorio y causas externas de mortalidad, la esperanza de
vida de esta población se hubiera prolongado significativamente.Currently death is an inevitable fact, however, the
life expectancy has changed significantly in time
and even in our days it differs widely among human groups. The advancement of health technology has allowed certain
deaths can be controlled, postponed or avoided. Therefore, the
The objective of this article is to measure the impact of causes
of avoidable death, on the demographic variables in the region
Colombian Caribbean, 1999-2014. To achieve this, the method was used
of hypothetical elimination of causes of death using tables of
lives The results indicate that if during the study period
they would have avoided some deaths due to diseases of the circulatory system and external causes of mortality, the hope of
life of this population would have been significantly prolonged
Evaluation of six leaf angle distribution functions in the Castillo® coffee variety
The study was conducted at the “Estacion Central Naranjal Cenicafe” (National Coffee Research Center, Chinchina, Caldas, Colombia) on Coffea arabica L. variety Castillo® to find the leaf angle distribution function that best described the tilt of the angles present in the canopy. Leaf angles were recorded for 1,559 leaves located in the upper, middle and lower profiles of the canopy. The observed leaf angle distribution was compared with the Beta, ellipsoidal and four de Wit distribution functions. The fit between comparisons was determined by the Pearson χ2 test and its significance, the regression coefficient statistically equal to one and the RMSE. Likewise, the leaf angle distribution recorded in the field per profile and their combination was described based on three angle classes (1st class: 0°-30°; 2nd class: 30°-60°; and 3rd class: 60°-90°) according to the Goudriaan criterion. Generally, the leaf angle distribution present in the canopy of Castillo® coffee variety is adequately described by the Beta function with two parameters and the ellipsoidal function based on the adjustment provided by the statistical tests
Preferential protection of domains ii and iii of bacillus thuringiensis cry1aa toxin by brush border membrane vesicles
Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo Abstract The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by liquid chromatography. The larger fragment is domain I and a portion of domain II (amino acid residues 1 to 371). The smaller 26-kDa polypeptide is the remainder of domain II and domain III (amino acids 372 to 609). When the mutant toxin was treated with high dose of M. sexta gut juice both fragments were degraded. However, when incubated with M. sexta BBMV, the 26 kDa fragment (domains II and III) was preferentially protected from gut juice proteases. As previously reported, wild type Cry1Aa toxin was also protected against degradation by gut juice proteases when incubated with M. sexta BBMV. On the contrary, when mouse BBMV was added to the reaction mixture neither Cry1Aa nor L371K toxins showed resistance to M. sexta gut juice proteases and were degraded. Since the whole Cry1Aa toxin and most of the domain II and domain III of L371K are protected from proteases in the presence of BBMV of the target insect, we suggest that the insertion of the toxin into the membrane is complex and involves all three domains. Key words: Bacillus thuringiensis, site directed mutagenesis, -endotoxin. Resumen La superficie de la toxina Cry1Aa, en el asa 2 del dominio II contiene expuesta la leucina 371, la cual fue modificada a lisina produciendo una mutante sensible a la tripsina, L371K. Esta mutante produce dos fragmentos de 37 y 26 kDa por acción de la tripsina que son separables por SDS-PAGE, pero que a la purificación por cromatografía líquida se mantienen como una sola molécula de 65 kDa. El fragmento grande contiene al dominio I y una parte del dominio II (aminoácidos 1 al 371). El polipéptido de 26 kDa contiene la parte restante del dominio II y dominio III (aminoácidos 372 al 609). Cuando la toxina mutante fue tratada con dosis altas de jugo intestinal de Manduca sexta, ambos fragmentos fueron degradados. Sin embargo, cuando fueron incubados en VMBC de M. sexta, el fragmento de 26 kDa fue protegido preferencialmente de las proteasas intestinales. Como se ha reportado, la toxina silvestre Cry1Aa también es protegida de la degradación de las proteasas cuando es incubada en VMBC de M. sexta. Sin embargo, cuando se adicionó VMBC de ratón a la mezcla de reacción, ni la toxina Cry1Aa ni la mutante L371K mostraron resistencia a las proteasas y fueron degradadas. Dado que la toxina completa de Cry1Aa y casi todo de los dominios II y III de L371K están protegidos de proteasas en presencia de VMBC del insecto, este estudio sugiere que la inserción de la toxina en la membrana involucra los tres dominios. Palabras clave: Bacillus thuringiensis, mutagénesis sitio dirigida, - endotoxin
Psychometric characteristics of the Spanish version of instruments to measure neck pain disability
Background: The NDI, COM and NPQ are evaluation instruments for disability due to NP. There was no Spanish version of NDI or COM for which psychometric characteristics were known. The objectives of this study were to translate and culturally adapt the Spanish version of the Neck Disability Index Questionnaire (NDI), and the Core Outcome Measure (COM), to validate its use in Spanish speaking patients with non-specific neck pain (NP), and to compare their psychometric characteristics with those of the Spanish version of the Northwick Pain Questionnaire (NPQ).
Methods: Translation/re-translation of the English versions of the NDI and the COM was done blindly and independently by a multidisciplinary team. The study was done in 9 primary care Centers and 12 specialty services from 9 regions in Spain, with 221 acute, subacute and chronic patients who visited their physician for NP: 54 in the pilot phase and 167 in the validation phase. Neck pain (VAS), referred pain (VAS), disability (NDI, COM and NPQ), catastrophizing (CSQ) and quality of life (SF-12) were measured on their first visit and 14 days later. Patients' self-assessment was used as the external criterion for pain and disability. In the pilot phase, patients' understanding of each item in the NDI and COM was assessed, and on day 1 test-retest reliability was estimated by giving a second NDI and COM in which the name of the questionnaires and the order of the items had been changed.
Results: Comprehensibility of NDI and COM were good. Minutes needed to fill out the questionnaires [median, (P25, P75)]: NDI. 4 (2.2, 10.0), COM: 2.1 (1.0, 4.9). Reliability: [ICC, (95%CI)]: NDI: 0.88 (0.80, 0.93). COM: 0.85 (0.75,0.91). Sensitivity to change: Effect size for patients having worsened, not changed and improved between days 1 and 15, according to the external criterion for disability: NDI: -0.24, 0.15, 0.66; NPQ: -0.14, 0.06, 0.67; COM: 0.05, 0.19, 0.92. Validity: Results of NDI, NPQ and COM were consistent with the external criterion for disability, whereas only those from NDI were consistent with the one for pain. Correlations with VAS, CSQ and SF-12 were similar for NDI and NPQ (absolute values between 0.36 and 0.50 on day 1, between 0.38 and 0.70 on day 15), and slightly lower for COM (between 0.36 and 0.48 on day 1, and between 0.33 and 0.61 on day 15). Correlation between NDI and NPQ: r = 0.84 on day 1, r = 0.91 on day 15. Correlation between COM and NPQ: r = 0.63 on day 1, r = 0.71 on day 15.
Conclusion: Although most psychometric characteristics of NDI, NPQ and COM are similar, those from the latter one are worse and its use may lead to patients' evolution seeming more positive than it actually is. NDI seems to be the best instrument for measuring NP-related disability, since its results are the most consistent with patient's assessment of their own clinical status and evolution. It takes two more minutes to answer the NDI than to answer the COM, but it can be reliably filled out by the patient without assistance
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Abstract
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
[Carta a Ignacio Hernando de Larramendi y Montiano]
Información adicional de autor de la carta: Presidente Ejecutivo, Alianza Compañía de Seguros y Reaseguros S.A.Fotografía número: 100
Evaluation of six leaf angle distribution functions in the Castillo® coffee variety
The study was conducted at the “Estacion Central Naranjal Cenicafe” (National Coffee Research Center, Chinchina, Caldas, Colombia) on Coffea arabica L. variety Castillo® to find the leaf angle distribution function that best described the tilt of the angles present in the canopy. Leaf angles were recorded for 1,559 leaves located in the upper, middle and lower profiles of the canopy. The observed leaf angle distribution was compared with the Beta, ellipsoidal and four de Wit distribution functions. The fit between comparisons was determined by the Pearson χ2 test and its significance, the regression coefficient statistically equal to one and the RMSE. Likewise, the leaf angle distribution recorded in the field per profile and their combination was described based on three angle classes (1st class: 0°-30°; 2nd class: 30°-60°; and 3rd class: 60°-90°) according to the Goudriaan criterion. Generally, the leaf angle distribution present in the canopy of Castillo® coffee variety is adequately described by the Beta function with two parameters and the ellipsoidal function based on the adjustment provided by the statistical tests
Preferential Protection of Domains II and III of Bacillus thuringiensis Cry1Aa Toxin by Brush Border Membrane Vesicles
The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to
generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately
37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of
65 kDa upon purification by liquid chromatography. The larger fragment is domain I and a portion of
domain II (amino acid residues 1 to 371). The smaller 26-kDa polypeptide is the remainder of domain
II and domain III (amino acids 372 to 609). When the mutant toxin was treated with high dose of M.
sexta gut juice both fragments were degraded. However, when incubated with M. sexta BBMV, the 26
kDa fragment (domains II and III) was preferentially protected from gut juice proteases. As previously
reported, wild type Cry1Aa toxin was also protected against degradation by gut juice proteases when
incubated with M. sexta BBMV. On the contrary, when mouse BBMV was added to the reaction mixture
neither Cry1Aa nor L371K toxins showed resistance to M. sexta gut juice proteases and were degraded.
Since the whole Cry1Aa toxin and most of the domain II and domain III of L371K are protected from
proteases in the presence of BBMV of the target insect, we suggest that the insertion of the toxin into
the membrane is complex and involves all three domains.La superficie de la toxina Cry1Aa, en el asa 2 del dominio II contiene expuesta la leucina 371, la cual fue modificada
a lisina produciendo una mutante sensible a la tripsina, L371K. Esta mutante produce dos fragmentos
de 37 y 26 kDa por acción de la tripsina que son separables por SDS-PAGE, pero que a la purificación
por cromatografía líquida se mantienen como una sola molécula de 65 kDa. El fragmento grande contiene al
dominio I y una parte del dominio II (aminoácidos 1 al 371). El polipéptido de 26 kDa contiene la parte restante
del dominio II y dominio III (aminoácidos 372 al 609). Cuando la toxina mutante fue tratada con dosis
altas de jugo intestinal de Manduca sexta, ambos fragmentos fueron degradados. Sin embargo, cuando fueron
incubados en VMBC de M. sexta, el fragmento de 26 kDa fue protegido preferencialmente de las proteasas
intestinales. Como se ha reportado, la toxina silvestre Cry1Aa también es protegida de la degradación de las
proteasas cuando es incubada en VMBC de M. sexta. Sin embargo, cuando se adicionó VMBC de ratón a la
mezcla de reacción, ni la toxina Cry1Aa ni la mutante L371K mostraron resistencia a las proteasas y fueron
degradadas. Dado que la toxina completa de Cry1Aa y casi todo de los dominios II y III de L371K están
protegidos de proteasas en presencia de VMBC del insecto, este estudio sugiere que la inserción de la toxina
en la membrana involucra los tres dominios
Preferential Protection of Domains II and III of Bacillus thuringiensis Cry1Aa Toxin by Brush Border Membrane Vesicles
Título español: Protección preferencial de los dominios II y III de la toxina Cry1Aa de Bacillus thuringiensis en Vesículas de Membrana de Borde de Cepillo
Abstract
The surface exposed Leucine 371 on loop 2 of domain II, in Cry1Aa toxin, was mutated to Lysine to generate the trypsin-sensitive mutant, L371K. Upon trypsin digestion L371K is cleaved into approximately 37 and 26 kDa fragments. These are separable on SDS-PAGE, but remain as a single molecule of 65 kDa upon purification by liquid chromatography. The larger fragment is domain I and a portion of domain II (amino acid residues 1 to 371). The smaller 26-kDa polypeptide is the remainder of domain II and domain III (amino acids 372 to 609). When the mutant toxin was treated with high dose of M. sexta gut juice both fragments were degraded. However, when incubated with M. sexta BBMV, the 26 kDa fragment (domains II and III) was preferentially protected from gut juice proteases. As previously reported, wild type Cry1Aa toxin was also protected against degradation by gut juice proteases when incubated with M. sexta BBMV. On the contrary, when mouse BBMV was added to the reaction mixture neither Cry1Aa nor L371K toxins showed resistance to M. sexta gut juice proteases and were degraded. Since the whole Cry1Aa toxin and most of the domain II and domain III of L371K are protected from proteases in the presence of BBMV of the target insect, we suggest that the insertion of the toxin into the membrane is complex and involves all three domains.
Key words: Bacillus thuringiensis, site directed mutagenesis, -endotoxin.
Resumen
La superficie de la toxina Cry1Aa, en el asa 2 del dominio II contiene expuesta la leucina 371, la cual fue modificada a lisina produciendo una mutante sensible a la tripsina, L371K. Esta mutante produce dos fragmentos de 37 y 26 kDa por acción de la tripsina que son separables por SDS-PAGE, pero que a la purificación por cromatografía líquida se mantienen como una sola molécula de 65 kDa. El fragmento grande contiene al dominio I y una parte del dominio II (aminoácidos 1 al 371). El polipéptido de 26 kDa contiene la parte restante del dominio II y dominio III (aminoácidos 372 al 609). Cuando la toxina mutante fue tratada con dosis altas de jugo intestinal de Manduca sexta, ambos fragmentos fueron degradados. Sin embargo, cuando fueron incubados en VMBC de M. sexta, el fragmento de 26 kDa fue protegido preferencialmente de las proteasas intestinales. Como se ha reportado, la toxina silvestre Cry1Aa también es protegida de la degradación de las proteasas cuando es incubada en VMBC de M. sexta. Sin embargo, cuando se adicionó VMBC de ratón a la mezcla de reacción, ni la toxina Cry1Aa ni la mutante L371K mostraron resistencia a las proteasas y fueron degradadas. Dado que la toxina completa de Cry1Aa y casi todo de los dominios II y III de L371K están protegidos de proteasas en presencia de VMBC del insecto, este estudio sugiere que la inserción de la toxina en la membrana involucra los tres dominios.
Palabras clave: Bacillus thuringiensis, mutagénesis sitio dirigida, - endotoxin
Caracterización de una delta endotoxina mutante de Bacillus thuringiensis con estabilidad y toxicidad aumentadas
<p class="MsoNormal" style="line-height: normal; margin: 0cm 0cm 0pt; tab-stops: 184.3pt;"><span style="font-size: small;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US">Título en ingles: Characterization of a Mutant <em style="mso-bidi-font-style: normal;">Bacillus</em> <em style="mso-bidi-font-style: normal;">thuringiensis</em> </span></strong><strong style="mso-bidi-font-weight: normal;"><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">d-</span></strong><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US">endotoxin With Enhanced Stability and Toxicity</span></strong></span></p><p class="MsoNormal" style="line-height: normal; margin: 0cm 0cm 0pt; tab-stops: 184.3pt;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US"><span style="font-size: small;"> </span></span></strong></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US"><span style="font-size: small;">Summary</span></span></strong></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><span style="font-size: small;"><span style="font-family: " lang="EN-US">The centrally located </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">a-</span><span style="font-family: " lang="EN-US">helix 5 of <em style="mso-bidi-font-style: normal;">Bacillus thuringiensis</em> </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">d-</span><span style="font-family: " lang="EN-US">endotoxins is critical for insect toxicity through ion-channel formation. We analyzed the role of the highly conserved residue Histidine 168 (H168) using molecular biology, electrophysiology and biophysical techniques. Toxin H168R was ~3-fold more toxic than the wild type (wt) protein whereas H168Q was 3 times less toxic against <em style="mso-bidi-font-style: normal;">Manduca sexta</em>. Spectroscopic analysis revealed that the H168Q and H168R mutations did not produce gross structural alterations, and that H168R (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 59 °C) was more stable than H168Q (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 57.5 °C) or than the wt (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 56 °C) toxins. These three toxins had similar binding affinities for larval midgut vesicles (K<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">com</span></sub>) suggesting that the differences in toxicity did not result from changes in initial receptor binding. Dissociation binding assays and voltage clamping analysis suggest that the reduced toxicity of the H168Q toxin may result from reduced insertion and/or ion channel formation. In contrast, the H168R toxin had a greater inhibition of the short circuit current than the wt toxin and an increased rate of irreversible binding (k<sub>obs</sub>), consistent with its lower LC<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">50</span></sub><span style="mso-spacerun: yes;"> </span>value.<span style="mso-spacerun: yes;"> </span>Molecular modeling analysis suggested that both the H168Q and H168R toxins could form additional hydrogen bonds that could account for their greater thermal stability. In addition to this, it is likely that H168R has an extra positive charge exposed to the surface which could increase its rate of insertion into susceptible membranes.<strong style="mso-bidi-font-weight: normal;"></strong></span></span></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><span style="font-family: " lang="EN-US"><span style="font-size: small;"> </span></span></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><span style="font-size: small;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US">Key words:</span></strong><span style="font-family: " lang="EN-US"> </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">a</span><span style="font-family: " lang="EN-US">-helix 5; Circular dichroism; molecular modeling; site-directed mutagenesis; <span style="mso-spacerun: yes;"> </span>thermal stability; <em style="mso-bidi-font-style: normal;">Bacillus thuringiensis</em></span></span></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: " lang="EN-US"><span style="font-size: small;"> </span></span></strong></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: "><span style="font-size: small;">Resumen</span></span></strong></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><span style="font-size: small;"><span style="font-family: ">La </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">a</span><span style="font-family: ">-Hélice 5 del domino I de las </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">d-</span><span style="font-family: ">endotoxinas de <em style="mso-bidi-font-style: normal;">Bacillus thuringiensis,</em> es crítica para la toxicidad de las toxinas contra insectos al participar en la formación de canales iónicos. La participación en la función tóxica del residuo Histidina 168 (H168) –el cual es altamente conservado– fue estudiada mediante técnicas de biología molecular, electrofisiología y biofísica. La toxina mutante H168R fue ~ 3 veces más tóxica que la toxina silvestre (ts) en <em style="mso-bidi-font-style: normal;">Manduca sexta</em>, mientras que H168Q fue 3 veces menos tóxica. Los análisis espectroscópicos indicaron que las mutaciones no producen alteraciones estructurales significativas y que la toxina H168R (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 59 °C) es más estable que las toxinas H168Q (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 57.5 °C) y wt (T<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">m</span></sub>= 56 °C). Las tres toxinas exhibieron uniones de afinidad similares (K<sub>com</sub>) en vesículas de intestino de larvas de insecto, indicando que las diferencias en la toxicidad no se deben a cambios en la unión inicial al receptor. Los ensayos de unión/disociación y fijación de voltaje mostraron que la reducción de la toxicidad de la toxina H168Q se puede atribuir a una disminución en la inserción y/o en la formación de canales iónicos. De otro lado, H168R mostró una inhibición a la corriente de corto circuito mayor que la ts y un aumento en unión irreversible (k<sub>obs</sub>), lo cual es consistente con un menor valor de CL<sub><span style="position: relative; top: 2pt; mso-text-raise: -2.0pt;">50</span></sub>. La modelación molecular sugiere que H168Q y H168R forman puentes de hidrógeno adicionales, lo que les confiere mayor estabilidad térmica. Adicionalmente, es probable que H168R tenga una carga positiva extra expuesta en la superficie, lo cual aumentaría su tasa de inserción en membranas susceptibles. <span style="mso-spacerun: yes;"> </span><strong style="mso-bidi-font-weight: normal;"></strong></span></span></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: "><span style="font-size: small;"> </span></span></strong></p><p class="MsoNormal" style="text-align: justify; line-height: normal; margin: 0cm 0cm 0pt;"><span style="font-size: small;"><strong style="mso-bidi-font-weight: normal;"><span style="font-family: ">Palabras clave:</span></strong><span style="font-family: "> </span><span style="font-family: Symbol; mso-bidi-font-size: 12.0pt;">a</span><span style="font-family: ">-hélice 5; dicroísmo circular; modelamiento molecular; mutagénesis sitio dirigida; estabilidad térmica; <em style="mso-bidi-font-style: normal;">Bacillus thuringiensis</em></span></span></p