7,792 research outputs found
Eclipsing binary stars with a delta Scuti component
Eclipsing binaries with a δ Sct component are powerful tools to derive the fundamental parameters and probe the internal structure of stars. In this study, spectral analysis of six primary δ Sct components in eclipsing binaries has been performed. Values of Teff, v sin i, and metallicity for the stars have been derived from medium-resolution spectroscopy. Additionally, a revised list of δ Sct stars in eclipsing binaries is presented. In this list, we have only given the δ Sct stars in eclipsing binaries to show the effects of the secondary components and tidal-locking on the pulsations of primary δ Sct components. The stellar pulsation, atmospheric and fundamental parameters (e.g. mass, radius) of 92 δ Sct stars in eclipsing binaries have been gathered. Comparison of the properties of single and eclipsing binary member δ Sct stars has been made. We find that single δ Sct stars pulsate in longer periods and with higher amplitudes than the primary δ Sct components in eclipsing binaries. The v sin i of δ Sct components is found to be significantly lower than that of single δ Sct stars. Relationships between the pulsation periods, amplitudes and stellar parameters in our list have been examined. Significant correlations between the pulsation periods and the orbital periods, Teff, log g, radius, mass ratio, v sin i and the filling factor have been found
Comparative Myology and Evolution of Marsupials and Other Vertebrates, With Notes on Complexity, Bauplan, and "Scala Naturae"
Optimal competitiveness for the Rectilinear Steiner Arborescence problem
We present optimal online algorithms for two related known problems involving
Steiner Arborescence, improving both the lower and the upper bounds. One of
them is the well studied continuous problem of the {\em Rectilinear Steiner
Arborescence} (). We improve the lower bound and the upper bound on the
competitive ratio for from and to
, where is the number of Steiner
points. This separates the competitive ratios of and the Symetric-,
two problems for which the bounds of Berman and Coulston is STOC 1997 were
identical. The second problem is one of the Multimedia Content Distribution
problems presented by Papadimitriou et al. in several papers and Charikar et
al. SODA 1998. It can be viewed as the discrete counterparts (or a network
counterpart) of . For this second problem we present tight bounds also in
terms of the network size, in addition to presenting tight bounds in terms of
the number of Steiner points (the latter are similar to those we derived for
)
Nonlinear coherent transport of waves in disordered media
We present a diagrammatic theory for coherent backscattering from disordered
dilute media in the nonlinear regime. The approach is non-perturbative in the
strength of the nonlinearity. We show that the coherent backscattering
enhancement factor is strongly affected by the nonlinearity, and corroborate
these results by numerical simulations. Our theory can be applied to several
physical scenarios like scattering of light in nonlinear Kerr media, or
propagation of matter waves in disordered potentials.Comment: 4 pages, 3 figure
Improved timed-mating, non-invasive method using fewer unproven female rats with pregnancy validation via early body mass increases
For studies requiring accurate conception-timing, reliable, efficient methods of detecting oestrus reduce time and costs, whilst improving welfare. Standard methods use vaginal cytology to stage cycle, and breeders are paired–up using approximately five proven females with proven males to achieve at least one conception on a specific day. We describe an alternative, fast, consistent, non-invasive method of timed-mating using detection of lordosis behaviour in Wistar and Lister-Hooded rats that used unproven females with high success rates. Rats under reverse-lighting had body masses recorded pre-mating, day (d) 3-4, d8, d10 and d18 of pregnancy. Using only the presence of the oestrus dance to time-mate females for 24-hrs, 89% Wistar and 88% Lister-Hooded rats successfully conceived. We did not observe behavioural oestrus in Sprague-Dawleys without males present. Significant body mass increases following mating distinguished pregnant from non-pregnant rats, as early as d4 of pregnancy (10% ± 1.0 increase cf 3% ± 1.2). The pattern of increases throughout gestation was similar for all pregnant rats until late pregnancy, when there were smaller increases for primi- and multiparous rats (32% ± 2.5; 25% ± 2.4), whereas nulliparous rats had highest gains (38% ± 1.5). This method demonstrated a distinct refinement of the previous timed-mating common practice used, as disturbance of females was minimised. Only the number required of nulli-, primi- or multiparous rats were mated, and body mass increases validated pregnancy status. This new breeding-management method is now established practice for two strains of rat and resulted in a reduction in animal use
What influences the speed of prototyping? An empirical investigation of twenty software startups
It is essential for startups to quickly experiment business ideas by building
tangible prototypes and collecting user feedback on them. As prototyping is an
inevitable part of learning for early stage software startups, how fast
startups can learn depends on how fast they can prototype. Despite of the
importance, there is a lack of research about prototyping in software startups.
In this study, we aimed at understanding what are factors influencing different
types of prototyping activities. We conducted a multiple case study on twenty
European software startups. The results are two folds, firstly we propose a
prototype-centric learning model in early stage software startups. Secondly, we
identify factors occur as barriers but also facilitators for prototyping in
early stage software startups. The factors are grouped into (1) artifacts, (2)
team competence, (3) collaboration, (4) customer and (5) process dimensions. To
speed up a startups progress at the early stage, it is important to incorporate
the learning objective into a well-defined collaborative approach of
prototypingComment: This is the author's version of the work. Copyright owner's version
can be accessed at doi.org/10.1007/978-3-319-57633-6_2, XP2017, Cologne,
German
Estimating black hole masses of blazars
Estimating black hole masses of blazars is still a big challenge. Because of
the contamination of jets, using the previously suggested size -- continuum
luminosity relation can overestimate the broad line region (BLR) size and black
hole mass for radio-loud AGNs, including blazars. We propose a new relation
between the BLR size and emission line luminosity and present
evidences for using it to get more accurate black hole masses of radio-loud
AGNs. For extremely radio-loud AGNs such as blazars with weak/absent emission
lines, we suggest to use the fundamental plane relation of their elliptical
host galaxies to estimate the central velocity dispersions and black hole
masses, if their velocity dispersions are not known but the host galaxies can
be mapped. The black hole masses of some well-known blazars, such as OJ 287, AO
0235+164 and 3C 66B, are obtained using these two methods and the M -
relation. The implications of their black hole masses on other related studies
are also discussed.Comment: 7 pages, invited talk presented in the workshop on Multiwavelength
Variability of Blazars (Guangzhou, China, Sept. 22-24, 2010). To be published
in the Journal of Astrophysics and Astronom
Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer
Background: ATR-Chk1 signalling network is critical for genomic stability. ATR-Chk1 may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. Patients and methods: We investigated ATR and phosphorylated CHK1Ser345 protein (pChk1) expression in 1712 breast cancers (Nottingham Tenovus series). ATR and Chk1 mRNA were evaluated in 1950 breast cancers (METABRIC cohort). Pre-clinically, biological consequences of ATR gene knockdown or ATR inhibition by small molecule inhibitor (VE-821) were investigated in MCF-7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). Results: High ATR and high cytoplasmic pChk1 expression was significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analysis, high ATR and high cytoplasmic pChk1 protein expression was associated with shorter breast cancer specific survival (BCSS). In multivariate analysis, high ATR remains an independent predictor of adverse outcome. At the mRNA level, high Chk1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple-negative phenotype and molecular classes associated with aggressive behaviour and shorter survival.. Pre-clinically, Chk1 phosphorylation at serine 345 following replication stress (induced by gemcitabine or hydroxyurea treatment) was impaired in ATR knockdown and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but had no effect on non-tumorigenic breast epithelial cells (MCF10A). Conclusions: We provides evidence that ATR and Chk1 are promising biomarkers and rational drug target for personalized therapy in breast cancer
Controlling a magnetic Feshbach resonance with laser light
The capability to tune the strength of the elastic interparticle interaction
is crucial for many experiments with ultracold gases. Magnetic Feshbach
resonances are a tool widely used for this purpose, but future experiments
would benefit from additional flexibility such as spatial modulation of the
interaction strength on short length scales. Optical Feshbach resonances offer
this possibility in principle, but suffer from fast particle loss due to
light-induced inelastic collisions. Here we show that light near-resonant with
a molecular bound-to-bound transition can be used to shift the magnetic field
at which a magnetic Feshbach resonance occurs. This makes it possible to tune
the interaction strength with laser light and at the same time induce
considerably less loss than an optical Feshbach resonance would do
- …
