17 research outputs found

    Static cylindrically symmetric spacetimes

    Full text link
    We prove existence of static solutions to the cylindrically symmetric Einstein-Vlasov system, and we show that the matter cylinder has finite extension. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered in \cite{BL}. We also obtain this result for the Vlasov-Poisson system.Comment: Added acknowledgemen

    Self-gravitating statinary spherically symmetric systems in relativistic galactic dynamics

    Get PDF
    We study equilibrium states in relativistic galactic dynamics which are described by solutions of the Einstein-Vlasov system for collisionless matter. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a bounded state space. Based on a dynamical systems analysis we derive new theorems that guarantee that the steady state solutions have finite radii and masses

    On the steady states of the spherically symmetric Einstein-Vlasov system

    Full text link
    Using both numerical and analytical tools we study various features of static, spherically symmetric solutions of the Einstein-Vlasov system. In particular, we investigate the possible shapes of their mass-energy density and find that they can be multi-peaked, we give numerical evidence and a partial proof for the conjecture that the Buchdahl inequality supr>02m(r)/r<8/9\sup_{r > 0} 2 m(r)/r < 8/9, m(r)m(r) the quasi-local mass, holds for all such steady states--both isotropic {\em and} anisotropic--, and we give numerical evidence and a partial proof for the conjecture that for any given microscopic equation of state--both isotropic {\em and} anisotropic--the resulting one-parameter family of static solutions generates a spiral in the radius-mass diagram.Comment: 34 pages, 18 figures, LaTe

    Dynamics of Bianchi type I elastic spacetimes

    Full text link
    We study the global dynamical behavior of spatially homogeneous solutions of the Einstein equations in Bianchi type I symmetry, where we use non-tilted elastic matter as an anisotropic matter model that naturally generalizes perfect fluids. Based on our dynamical systems formulation of the equations we are able to prove that (i) toward the future all solutions isotropize; (ii) toward the initial singularity all solutions display oscillatory behavior; solutions do not converge to Kasner solutions but oscillate between different Kasner states. This behavior is associated with energy condition violation as the singularity is approached.Comment: 28 pages, 11 figure

    Existence of axially symmetric static solutions of the Einstein-Vlasov system

    Full text link
    We prove the existence of static, asymptotically flat non-vacuum spacetimes with axial symmetry where the matter is modeled as a collisionless gas. The axially symmetric solutions of the resulting Einstein-Vlasov system are obtained via the implicit function theorem by perturbing off a suitable spherically symmetric steady state of the Vlasov-Poisson system.Comment: 32 page

    The Einstein-Vlasov System/Kinetic Theory

    Full text link
    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein--Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein--Vlasov system. Since then many theorems on global properties of solutions to this system have been established.Comment: Published version http://www.livingreviews.org/lrr-2011-

    Self-gravitating stationary spherically symmetric systems in relativistic galactic dynamics

    No full text
    We study equilibrium states in relativistic galactic dynamics which are described by stationary solutions of the Einstein-Vlasov system for collisionless matter. We recast the equations into a regular three-dimensional system of autonomous first order ordinary differential equations on a bounded state space. Based on a dynamical systems analysis we derive new theorems that guarantee that the steady state solutions have finite radii and masses
    corecore