610 research outputs found

    Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O System

    Get PDF
    Bioactive sol-gel glasses are attractive biomaterials from both technological and functional viewpoints as they require lower processing temperatures compared to their melt-derived counterparts and exhibit a high specific surface area due to inherent nanoporosity. However, most of these materials are based on relatively simple binary or ternary oxide systems since the synthesis of multicomponent glasses via sol-gel still is a challenge. This work reports for the first time the production and characterization of sol-gel materials based on a six-oxide basic system (SiO2-P2O5-CaO-MgO-Na2O-K2O). It was shown that calcination played a role in inducing the formation of crystalline phases, thus generating glass-ceramic materials. The thermal, microstructural and textural properties, as well as the in vitro bioactivity, of these sol-gel materials were assessed and compared to those of the melt-derived counterpart glass with the same nominal composition. In spite of their glass-ceramic nature, these materials retained an excellent apatite-forming ability, which is key in bone repair applications

    A guided walk through the world of mesoporous bioactive glasses (MBGs): Fundamentals, processing, and applications

    Get PDF
    Bioactive glasses (BGs) are traditionally known to be able to bond to living bone and stimulate bone regeneration. The production of such materials in a mesoporous form allowed scientists to dramatically expand the versatility of oxide-based glass systems as well as their applications in biomedicine. These nanostructured materials, called mesoporous bioactive glasses (MBGs), not only exhibit an ultrafast mineralization rate but can be used as vehicles for the sustained delivery of drugs, which are hosted inside the mesopores, and therapeutic ions, which are released during material dissolution in contact with biological fluids. This review paper summarizes the main strategies for the preparation of MBGs, as well as their properties and applications in the biomedical field, with an emphasis on the methodological aspects and the promise of hierarchical systems with multiscale porosity

    Analisi carpologiche per la Vasca dello Specchio (Ferrara, XIV-XV sec. d.C.): metodologie d’indagine e risultati

    Get PDF
    Lo scavo condotto tra Corso Porta Reno e Via Vaspergolo, nel centro storico di Ferrara, ha portato alla luce un vano sotterraneo rettangolare denominato “Vasca dello Specchio”, utilizzato per lo smaltimento dei rifiuti tra XIV e XV secolo. Il riempimento, in parte già analizzato e pubblicato, ù stato oggetto di nuove analisi carpologiche. I semi e i frutti, conservati prevalentemente per sommersione e in ottimo stato, sono complessivamente oltre 400.000 e la lista floristica comprende 168 taxa. La maggior parte dei reperti appartiene a piante coltivate/coltivabili o spontanee correlate all’uomo, che forniscono nuove informazioni sulla dieta vegetale e sull’ambiente urbano della Ferrara basso-medievale/rinascimentale. I reperti evidenziano anche pratiche domestiche e culinarie talora curiose

    Sintering behavior of a six-oxide silicate bioactive glass for scaffold manufacturing

    Get PDF
    The intrinsic brittleness of bioactive glasses (BGs) is one of the main barriers to the widespread use of three-dimensional porous BG-derived bone grafts (scaffolds) in clinical practice. Among all the available strategies for improving the mechanical properties of BG-based scaffolds, strut densification upon sintering treatments at high temperatures represents a relatively easy approach, but its implementation might lead to undesired and poorly predictable decrease in porosity, mass transport properties and bioactivity resulting from densification and devitrification phenomena occurring in the material upon heating. The aim of the present work was to investigate the sinter-crystallization of a highly bioactive SiO2-P2O5-CaO–MgO–Na2O–K2O glass (47.5B composition) in reference to its suitability for the fabrication of bonelike foams. The thermal behavior of 47.5B glass particles was investigated upon sintering at different temperatures in the range of 600–850◩C by means of combined thermal analyses (differential thermal analysis (DTA) and hot-stage microscopy (HSM)). Then, XRD measurements were carried out to identify crystalline phases developed upon sintering. Finally, porous scaffolds were produced by a foam replica method in order to evaluate the effect of the sintering temperature on the mechanical properties under compression loading conditions. Assessing a relationship between mechanical properties and sintering temperature, or in other words between scaffold performance and fabrication process, is a key step towards the rationale design of optimized scaffolds for tissue repair

    ASCA and BeppoSAX observations of the peculiar X-ray source 4U1700+24/HD154791

    Get PDF
    The X-ray source 4U1700+24/HD154791 is one of the few galactic sources whose counterpart is an evolved M star. In X-rays the source shows extreme erratic variability and a complex and variable spectrum. While this strongly suggests accretion onto a compact object, no clear diagnosis of binarity was done up to now. We report on ASCA and BeppoSAX X-ray broad band observations of this source and on ground optical observations from the Loiano 1.5 m telescope.Comment: 5 pages, 4 figures, uses aipproc.sty, to appear in Proceedings of the Fifth Compton Symposiu

    Identification of an Extended Accretion Disk Corona in the Hercules X-1 Low State: Moderate Optical Depth, Precise Density Determination, and Verification of CNO Abundances

    Full text link
    We identify an accretion disk atmosphere and corona from the high resolution X-ray spectrum of Hercules X-1, and we determine its detailed physical properties. More than two dozen recombination emission lines (from Fe XXVI at 1.78 A to N VI at 29.08 A) and Fe K-alpha, K-beta fluorescence lines were detected in a 50 ks observation with the Chandra High-Energy Transmission Grating Spectrometer (HETGS). They allow us to measure the density, temperature, spatial distribution, elemental composition, and kinematics of the plasma. We exclude HZ Her as the source of the recombination emission. We compare accretion disk model atmospheres with the observed spectrum in order to constrain the stratification of density and ionization, disk atmosphere area, elemental composition, and energetics. The atmospheric spectrum observed during the low state is photoionized by the main-on X-ray continuum, indicating that the disk is observed edge-on during the low state. We infer the mean number of scatterings N of Ly-alpha and Ly-beta line photons from H-like ions. We derive N < 69 for O VIII Ly_alpha_1, which rules out the presence of a mechanism modeled by Sako (2003) to enhance N VII emission via a line overlap with O VIII. The line optical depth diagnostics are consistent with a flattened atmosphere. Our spectral analysis, the disk atmosphere model, and the presence of intense N VII and N VI lines (plus N V in the UV), confirm the over-abundance of nitrogen relative to other metals, which was shown to be indicative of CNO cycle processing in a massive progenitor.Comment: 38 pages, 14 figures, accepted for publication in Ap
    • 

    corecore