693 research outputs found
3D printing of hierarchical scaffolds based on mesoporous bioactive glasses (MBGs)-fundamentals and applications
The advent of mesoporous bioactive glasses (MBGs) in applied bio-sciences led to the birth of a new class of nanostructured materials combining triple functionality, that is, bone-bonding capability, drug delivery and therapeutic ion release. However, the development of hierarchical three-dimensional (3D) scaffolds based on MBGs may be difficult due to some inherent drawbacks of MBGs (e.g., high brittleness) and technological challenges related to their fabrication in a multiscale porous form. For example, MBG-based scaffolds produced by conventional porogen-assisted methods exhibit a very low mechanical strength, making them unsuitable for clinical applications. The application of additive manufacturing techniques significantly improved the processing of these materials, making it easier preserving the textural and functional properties of MBGs and allowing stronger scaffolds to be produced. This review provides an overview of the major aspects relevant to 3D printing of MBGs, including technological issues and potential applications of final products in medicine
The 1998 outburst of the X-ray transient XTE J2012+381 as observed with BeppoSAX
We report on the results of a series of X-ray observations of the transient
black hole candidate XTE J2012+381 during the 1998 outburst performed with the
BeppoSAX satellite. The observed broad-band energy spectrum can be described
with the superposition of an absorbed disk black body, an iron line plus a high
energy component, modelled with either a power law or a Comptonisation tail.
The source showed pronounced spectral variability between our five
observations. While the soft component in the spectrum remained almost
unchanged throughout our campaign, we detected a hard spectral tail which
extended to 200 keV in the first two observations, but became barely detectable
up to 50 keV in the following two. A further re-hardening is observed in the
final observation. The transition from a hard to a soft and then back to a hard
state occurred around an unabsorbed 0.1-200 keV luminosity of 10^38 erg/s (at
10 kpc). This indicates that state transitions in XTE 2012+281 are probably not
driven only by mass accretion rate, but additional physical parameters must
play a role in the evolution of the outburst.Comment: Paper accepted for publication on A&A (macro included, 9 pages, 5
figures
BeppoSAX observations of the black hole candidates LMC X-1 and LMC X-3
We describe BeppoSAX observations of the black hole candidates LMC X--1 and
LMC X--3 performed in Oct. 1997. Both sources can be modelled by a multicolor
accretion disk spectrum, with temperature keV. However, there is some
evidence that a thin emitting component coexists with the thick disk at these
temperatures. In the direction of LMC X--1, we detected a significant emission
above 10 keV, which we suspect originates from the nearby source PSR 0540-69.
For LMC X--1, we estimate an absorbing column density of cm, which is almost ten times larger than that found for LMC
X--3. In both sources, we find no indication of emission or absorption features
whatsoever.Comment: 4 pages, 2 figures. Accepted for pubblication in the Proc. of 32nd
Cospar scientific assembly, Nagoya, 13-15 July 199
Comparison between bioactive sol-gel and melt-derived glasses/glass-ceramics based on the multicomponent SiO2-P2O5-CaO-MgO-Na2O-K2O System
Bioactive sol-gel glasses are attractive biomaterials from both technological and functional viewpoints as they require lower processing temperatures compared to their melt-derived counterparts and exhibit a high specific surface area due to inherent nanoporosity. However, most of these materials are based on relatively simple binary or ternary oxide systems since the synthesis of multicomponent glasses via sol-gel still is a challenge. This work reports for the first time the production and characterization of sol-gel materials based on a six-oxide basic system (SiO2-P2O5-CaO-MgO-Na2O-K2O). It was shown that calcination played a role in inducing the formation of crystalline phases, thus generating glass-ceramic materials. The thermal, microstructural and textural properties, as well as the in vitro bioactivity, of these sol-gel materials were assessed and compared to those of the melt-derived counterpart glass with the same nominal composition. In spite of their glass-ceramic nature, these materials retained an excellent apatite-forming ability, which is key in bone repair applications
Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies
Nowadays, bioactive glasses (BGs) are mainly used to improve and support the healing process of osseous defects deriving from traumatic events, tumor removal, congenital pathologies, implant revisions, or infections. In the past, several approaches have been proposed in the replacement of extensive bone defects, each one with its own advantages and drawbacks. As a result, the need for synthetic bone grafts is still a remarkable clinical challenge since more than 1 million bone-graft surgical operations are annually performed worldwide. Moreover, recent studies show the effectiveness of BGs in the regeneration of soft tissues, too. Often, surgical criteria do not match the engineering ones and, thus, a compromise is required for getting closer to an ideal outcome in terms of good regeneration, mechanical support, and biocompatibility in contact with living tissues. The aim of the present review is providing a general overview of BGs, with particular reference to their use in clinics over the last decades and the latest synthesis/processing methods. Recent advances in the use of BGs in tissue engineering are outlined, where the use of porous scaffolds is gaining growing importance thanks to the new possibilities given by technological progress extended to both manufacturing processes and functionalization techniques
- …