8 research outputs found
Self-Aligning Finger Exoskeleton for the Mobilization of the Metacarpophalangeal Joint
In the context of hand and finger rehabilitation,
kinematic compatibility is key for the acceptability
and clinical exploitation of robotic devices. Different kinematic
chain solutions have been proposed in the state of
the art, with different trade-offs between characteristics
of kinematic compatibility, adaptability to different anthropometries,
and the ability to compute relevant clinical
information. This study presents the design of a novel
kinematic chain for the mobilization of the metacarpophalangeal
(MCP) joint of the long fingers and a mathematical
model for the real-time computation of the joint angle and
transferred torque. The proposed mechanism can self-align
with the human joint without hindering force transfer or
inducing parasitic torque. The chain has been designed
for integration into an exoskeletal device aimed at rehabilitating
traumatic-hand patients. The exoskeleton actuation
the unit has a series-elastic architecture for compliant human-robot
interaction and has been assembled and preliminarily
tested in experiments with eight human subjects. Performance
has been investigated in terms of (i) the accuracy of
the MCP joint angle estimation through comparison with
a video-based motion tracking system, (ii) residual MCP
torque when the exoskeleton is controlled to provide null
output impedance and (iii) torque-tracking performance.
Results showed a root-mean-square error (RMSE) below
5 degrees in the estimated MCP angle. The estimated residual
MCP torque resulted below 7 mNm. Torque tracking performance
shows an RMSE lower than 8 mNm in following
sinusoidal reference profiles. The results encourage further
investigations of the device in a clinical scenario
Ottimizzazione del ciclo produttivo di un componente aeronautico
La tesi è il risultato dell’esperienza di tirocinio svolta presso un’azienda di produzione meccanica. L’azienda esegue una produzione su commessa, dove i lotti sono molto diversificati e costituiti da un numero ridotto di pezzi.
L’obbiettivo della tesi è stato l’ottimizzazione temporale ed economica del ciclo di produzione di un componente meccanico appartenente ad una famiglia di particolari aeronautici; si è cercato inoltre di standardizzare metodi e attrezzature per i componenti appartenenti alla famiglia e di inserire nel ciclo fattori di innovazione che permettessero di estendere il know-how aziendale
A Multimodal Sensory Apparatus for Robotic Prosthetic Feet Combining Optoelectronic Pressure Transducers and IMU
Timely and reliable identification of control phases is functional to the control of a powered robotic lower-limb prosthesis. This study presents a commercial energy-store-and-release foot prosthesis instrumented with a multimodal sensory system comprising optoelectronic pressure sensors (PS) and IMU. The performance was verified with eight healthy participants, comparing signals processed by two different algorithms, based on PS and IMU, respectively, for real-time detection of heel strike (HS) and toe-off (TO) events and an estimate of relevant biomechanical variables such as vertical ground reaction force (vGRF) and center of pressure along the sagittal axis (CoPy). The performance of both algorithms was benchmarked against a force platform and a marker-based stereophotogrammetric motion capture system. HS and TO were estimated with a time error lower than 0.100 s for both the algorithms, sufficient for the control of a lower-limb robotic prosthesis. Finally, the CoPy computed from the PS showed a Pearson correlation coefficient of 0.97 (0.02) with the same variable computed through the force platform