100 research outputs found
MGP Panel is a comprehensive targeted genomics panel for molecular profiling of multiple myeloma patients
PURPOSE: We designed a comprehensive multiple myeloma (MM) targeted sequencing panel to identify common genomic abnormalities in a single assay and validated it against known standards. EXPERIMENTAL DESIGN: The panel comprised 228 genes/exons for mutations, 6 regions for translocations, and 56 regions for copy number abnormalities (CNAs). Toward panel validation, targeted sequencing was conducted on 233 patient samples and further validated using clinical fluorescence in situ hybridization (FISH) (translocations), multiplex ligation probe analysis (MLPA) (CNAs), whole genome sequencing (WGS) (CNAs, mutations, translocations) or droplet digital PCR (ddPCR) of known standards (mutations). RESULTS: Canonical IgH translocations were detected in 43.2% of patients by sequencing, and aligned with FISH except for one patient. CNAs determined by sequencing and MLPA for 22 regions were comparable in 103 samples and concordance between platforms was R2=0.969. VAFs for 74 mutations were compared between sequencing and ddPCR with concordance of R2=0.9849. CONCLUSIONS: In summary, we have developed a targeted sequencing panel that is as robust or superior to FISH and WGS. This molecular panel is cost effective, comprehensive, clinically actionable and can be routinely deployed to assist risk stratification at diagnosis or post-treatment to guide sequencing of therapies
Artificial Polyploidy Improves Bacterial Single Cell Genome Recovery
BACKGROUND: Single cell genomics (SCG) is a combination of methods whose goal is to decipher the complete genomic sequence from a single cell and has been applied mostly to organisms with smaller genomes, such as bacteria and archaea. Prior single cell studies showed that a significant portion of a genome could be obtained. However, breakages of genomic DNA and amplification bias have made it very challenging to acquire a complete genome with single cells. We investigated an artificial method to induce polyploidy in Bacillus subtilis ATCC 6633 by blocking cell division and have shown that we can significantly improve the performance of genomic sequencing from a single cell. METHODOLOGY/PRINCIPAL FINDINGS: We inhibited the bacterial cytoskeleton protein FtsZ in B.subtilis with an FtsZ-inhibiting compound, PC190723, resulting in larger undivided single cells with multiple copies of its genome. qPCR assays of these larger, sorted cells showed higher DNA content, have less amplification bias, and greater genomic recovery than untreated cells. SIGNIFICANCE: The method presented here shows the potential to obtain a nearly complete genome sequence from a single bacterial cell. With millions of uncultured bacterial species in nature, this method holds tremendous promise to provide insight into the genomic novelty of yet-to-be discovered species, and given the temporary effects of artificial polyploidy coupled with the ability to sort and distinguish differences in cell size and genomic DNA content, may allow recovery of specific organisms in addition to their genomes
Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)
(Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online
GA4GH: International policies and standards for data sharing across genomic research and healthcare.
The Global Alliance for Genomics and Health (GA4GH) aims to accelerate biomedical advances by enabling the responsible sharing of clinical and genomic data through both harmonized data aggregation and federated approaches. The decreasing cost of genomic sequencing (along with other genome-wide molecular assays) and increasing evidence of its clinical utility will soon drive the generation of sequence data from tens of millions of humans, with increasing levels of diversity. In this perspective, we present the GA4GH strategies for addressing the major challenges of this data revolution. We describe the GA4GH organization, which is fueled by the development efforts of eight Work Streams and informed by the needs of 24 Driver Projects and other key stakeholders. We present the GA4GH suite of secure, interoperable technical standards and policy frameworks and review the current status of standards, their relevance to key domains of research and clinical care, and future plans of GA4GH. Broad international participation in building, adopting, and deploying GA4GH standards and frameworks will catalyze an unprecedented effort in data sharing that will be critical to advancing genomic medicine and ensuring that all populations can access its benefits
The governance of teacher competency standards in New Zealand
Competency standards for teachers have re-emerged as an issue for education. Their purpose has been asserted as: assisting in the governance of education; legitimating the system; improving the standard of pupil achievement and the quality of learning; improving the quality of teaching; raising the standard of teacher education; and promoting teaching as a profession. The paper addresses the possible issues in the governance of competency standards in the policy regime
REGIONAL DEMOGRAPHIC IMPACTS on DRIVERS of SOCIAL VULNERABILITY: A LOCAL VIEW of NORWAY
The combination of climate projections for Norway, and its recent demographic history make the country a good case study for regional development and social vulnerability to climate change. The rural settlements constituting northern Norway maintain an economic and demographic history with the potential to create a scenario of regional social vulnerability. The paper's analysis will illustrate the great variation between the regions of northern and southern Norway. This paper's objective is to assess Norway's potential for social vulnerability to climate change at a more local level.Thesis (M.S., Geography) -- University of Idaho, December 201
The Politics of Teacher Competence
This article documents the history of the Allais paradox, and shows that underneath the many discussions of the various protagonists lay different, irreconcilable epistemological positions. Savage, like his mentor von Neumann and similar to economist Friedman, worked from an epistemology of generalized characterizations. Allais, on the other hand, like economists Samuelson and Baumol, started from an epistemology of exact descriptions in which every axiom was an empirical claim that could be refuted directly by observations. As a result, the two sides failed to find a common ground. Only a few decades later was the now so-called Allais paradox rediscovered as an important precursor when a new behavioural economic subdiscipline started to adopt the epistemology of exact descriptions and its accompanying falsifications of rational choice theory
- …