2,054 research outputs found
Performance and benefits of an advanced technology supersonic cruise aircraft
The results of four years research on technology are synthesized in an advanced supersonic cruise aircraft design. Comparisons are presented with the former United States SST and the British-French Concorde, including aerodynamic efficiency, propulsion efficiency, weight efficiency, and community noise. Selected trade study results are presented on the subjects of design cruise Mach number, engine cycle selection, and noise suppression. The critical issue of program timing is addressed and some observations made regarding the impact that timing has on engine selection and minimization of program risk
Market trends
A very large segment of the over water, long haul passenger market, 31% of the passengers who provide 42% of the passenger revenue, offers a significant market for an advanced supersonic transport. This is for both the first class and full-fare economy passenger markets. The supersonic transport may be more competitive here in spite of lower costs of subsonic transports, as passenger preference is a more powerful variable than DOC. This latter fact was amply demonstrated in the late fifties when the jets completely replaced the reciprocating engine transports on most world routes, in spite of slightly higher fares
Effects of hydrogen/deuterium absorption on the magnetic properties of Co/Pd multilayers
The effects of hydrogen (H2) and deuterium (D2) absorption were studied in
two Co/Pd multilayers with perpendicular magnetic anisotropy (PMA) using
polarized neutron reflectivity (PNR). PNR was measured in an external magnetic
field H applied in the plane of the sample with the magnetization M confined in
the plane for {\mu}_o H= 6.0 T and partially out of plane at 0.65 T. Nominal
thicknesses of the Co and Pd layers were 2.5 {\AA} and 21 {\AA}, respectively.
Because of these small values, the actual layer chemical composition,
thickness, and interface roughness parameters were determined from the nuclear
scattering length density profile ({\rho}_n) and its derivative obtained from
both x-ray reflectivity and PNR, and uncertainties were determined using Monte
Carlo analysis. The PNR {\rho}_n showed that although D2 absorption occurred
throughout the samples, absorption in the multilayer stack was modest (0.02 D
per Pd atom) and thus did not expand. Direct magnetometry showed that H2
absorption decreased the total M at saturation and increased the component of M
in the plane of the sample when not at saturation. The PNR magnetic scattering
length density ({\rho}_m) revealed that the Pd layers in the multilayer stack
were magnetized and that their magnetization was preferentially modified upon
D2 absorption. In one sample, a modulation of M with twice the multilayer
period was observed at {\mu}_o H= 0.65 T, which increased upon D2 absorption.
These results indicate that H2 or D2 absorption decreases both the PMA and
total magnetization of the samples. The lack of measurable expansion during
absorption indicates that these changes are primarily governed by modification
of the electronic structure of the material.Comment: to appear in Physics review B, 201
Flight and tunnel test results of the MDC mechanical jet noise suppressor nozzle
The flight and wind tunnel tests to determine the acoustic and performance effects of a mechanical jet noise suppressor nozzle mounted on a Viper engine of an HS-125 airplane are discussed. Flyover noise measurements were made with microphones mounted on top of a 137.5 m bridge tower. Seven nozzle configurations including two references nozzles, two suppressors, and three ejector inlets were tested. The suppressor nozzle of interest for an advanced supersonic transport, the suppressor/treated ejector, achieved a measured noise reduction of 14 EPNdB relative to a conventional conical reference nozzle at the highest pressure ratio tested (approximately 2.5). The unique engine nacelle, flight hardware, and nacelles from the HS-125 flight test program, combined with a simulated HS-125 fuselage were windtunnel tested. Both propulsion and acoustic data were recorded. Preliminary thrust data results from the wind tunnel tests are summarized and compared to other mechanical suppressor test results. The test results indicate that a noise reduction of at least 16 EPNdB would be possible for the suppressor/ejector nozzle scaled to typical AST engine size with a 5% thrust loss at a typical takeoff climb speed
Recommended from our members
Restorative Streetscapes: Promoting Positive Mental Health Outcomes through Urban Landscape Design in Winooski, Vermont
The global health burden of mental health disorders is immense. The World Health Organization ranks depression as the single largest contributor to global disability; anxiety disorders alone rank sixth. One in four people will have a diagnosable mental illness in their lifetime and mental health conditions are increasing worldwide, rising 13% in the last decade. The economic implications are also immense, costing the global economy US $1 trillion each year. Mental health is more than the absence of disorders or disabilities, however. It is defined by the WHO as “a state of well-being in which an individual realizes his or her own abilities, can cope with the normal stresses of life, can work productively, and is able to make a contribution to his or her community.” Determinants of mental health include social, cultural, psychological, biological, economic, political, and environmental factors. Despite the complex interaction of contributing factors that determine an individual’s mental health condition, a growing body of research has found the built environment to be an important determinant (Evans 2003; Firdaus 2017; Satcher, Okafor, and Dill 2012). Streets are, in turn, the most prominent element of the urban public realm, and they represent an important opportunity to implement landscape-based features that may improve a community’s mental health and well-being. This project will generate a landscape design plan for streetscapes in Winooski, VT that strives to promote improved well-being and mental health for local residents. The city of Winooski was selected because it is the most ethnically diverse and one of the poorest towns in the state of Vermont (of towns with more than 2,000 people) according to the American Community Survey. Even though community mental health data is hard to access, low socio-economic status and ethnic minority neighborhoods are risk factors for poor mental health
What adolescents are reading and what their teachers are not: between the deformed discourse and disdain of the graphic novel
It was only at the beginning of this year that I realised that I had spent all of my teaching and research life talking with children under the age of twelve years, and even within this group it was mostly with children under six. While I had come to understand a great deal about literacy acquisition (Geekie, Cambourne and Fitzsimmons 1999) and elementary school reading development (Harris, Turbill, Fitzsimmons and McKenzie 2001), as my own teenage daughter constantly reminded me, all I knew was ‘ankle-biter speak’. Determined to change this, I began working with a group of students in a local high school investigating what they were reading and how they were reading, an area that would appear be relatively ambiguous (Signorini 2002) and ill-defined (Manzo 2004). The voices of these high school students have been inserted in this paper as part of an interrogative frame in an attempt to undertake an ‘imaginative exploration of possibilities other than those currently available to the child adolescent reader’ (Malian 2001, p. 58)
Theoretical and Experimental Adsorption Studies of Polyelectrolytes on an Oppositely Charged Surface
Using self-assembly techniques, x-ray reflectivity measurements, and computer
simulations, we study the effective interaction between charged polymer rods
and surfaces. Long-time Brownian dynamics simulations are used to measure the
effective adhesion force acting on the rods in a model consisting of a planar
array of uniformly positively charged, stiff rods and a negatively charged
planar substrate in the presence of explicit monovalent counterions and added
monovalent salt ions in a continuous, isotropic dielectric medium. This
electrostatic model predicts an attractive polymer-surface adhesion force that
is weakly dependent on the bulk salt concentration and that shows fair
agreement with a Debye-Huckel approximation for the macroion interaction at
salt concentrations near 0.1 M. Complementary x-ray reflectivity experiments on
poly(diallyldimethyl ammonium) chloride (PDDA) monolayer films on the native
oxide of silicon show that monolayer structure, electron density, and surface
roughness are likewise independent of the bulk ionic strength of the solution.Comment: Revtex, prb format; uses amssym
Magnetically asymmetric interfaces in a (LaMnO)/(SrMnO) superlattice due to structural asymmetries
Polarized neutron reflectivity measurements of a ferromagnetic
[(LaMnO)/(SrMnO)] superlattice reveal a modulated
magnetic structure with an enhanced magnetization at the interfaces where
LaMnO was deposited on SrMnO (LMO/SMO). However, the opposite
interfaces (SMO/LMO) are found to have a reduced ferromagnetic moment. The
magnetic asymmetry arises from the difference in lateral structural roughness
of the two interfaces observed via electron microscopy, with strong
ferromagnetism present at the interfaces that are atomically smooth over tens
of nanometers. This result demonstrates that atomic-scale roughness can
destabilize interfacial phases in complex oxide heterostructures.Comment: 5 pages, 4 figure
Sputtering of Oxygen Ice by Low Energy Ions
Naturally occurring ices lie on both interstellar dust grains and on
celestial objects, such as those in the outer solar system. These ices are
continu- ously subjected to irradiation by ions from the solar wind and/or
cosmic rays, which modify their surfaces. As a result, new molecular species
may form which can be sputtered off into space or planetary atmospheres. We
determined the experimental values of sputtering yields for irradiation of
oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2+, N2+ and
O2+) charged ions with 4 keV kinetic energy. In these laboratory experiments,
oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber
at low temperature to simulate the environment of space. The number of
molecules removed by sputtering was observed by measurement of the ice
thickness using laser interferometry. Preliminary mass spectra were taken of
sputtered species and of molecules formed in the ice by temperature programmed
desorption (TPD). We find that the experimental sputtering yields increase
approximately linearly with the projectile ion mass (or momentum squared) for
all ions studied. No difference was found between the sputtering yield for
singly and doubly charged ions of the same atom within the experimental
uncertainty, as expected for a process dominated by momentum transfer. The
experimental sputter yields are in good agreement with values calculated using
a theoretical model except in the case of oxygen ions. Preliminary studies have
shown molecular oxygen as the dominant species sputtered and TPD measurements
indicate ozone formation.Comment: to be published in Surface Science (2015
- …