480 research outputs found
Effective Conformal Theory and the Flat-Space Limit of AdS
We develop the idea of an effective conformal theory describing the low-lying
spectrum of the dilatation operator in a CFT. Such an effective theory is
useful when the spectrum contains a hierarchy in the dimension of operators,
and a small parameter whose role is similar to that of 1/N in a large N gauge
theory. These criteria insure that there is a regime where the dilatation
operator is modified perturbatively. Global AdS is the natural framework for
perturbations of the dilatation operator respecting conformal invariance, much
as Minkowski space naturally describes Lorentz invariant perturbations of the
Hamiltonian. Assuming that the lowest-dimension single-trace operator is a
scalar, O, we consider the anomalous dimensions, gamma(n,l), of the
double-trace operators of the form O (del^2)^n (del)^l O. Purely from the CFT
we find that perturbative unitarity places a bound on these dimensions of
|gamma(n,l)|<4. Non-renormalizable AdS interactions lead to violations of the
bound at large values of n. We also consider the case that these interactions
are generated by integrating out a heavy scalar field in AdS. We show that the
presence of the heavy field "unitarizes" the growth in the anomalous
dimensions, and leads to a resonance-like behavior in gamma(n,l) when n is
close to the dimension of the CFT operator dual to the heavy field. Finally, we
demonstrate that bulk flat-space S-matrix elements can be extracted from the
large n behavior of the anomalous dimensions. This leads to a direct connection
between the spectrum of anomalous dimensions in d-dimensional CFTs and
flat-space S-matrix elements in d+1 dimensions. We comment on the emergence of
flat-space locality from the CFT perspective.Comment: 46 pages, 2 figures. v2: JHEP published versio
Neo-Aristotelian Naturalism and the Evolutionary Objection: Rethinking the Relevance of Empirical Science
Neo-Aristotelian metaethical naturalism is a modern attempt at naturalizing ethics using ideas from Aristotle’s teleological metaphysics. Proponents of this view argue that moral virtue in human beings is an instance of natural goodness, a kind of goodness supposedly also found in the realm of non-human living things. Many critics question whether neo-Aristotelian naturalism is tenable in light of modern evolutionary biology. Two influential lines of objection have appealed to an evolutionary understanding of human nature and natural teleology to argue against this view. In this paper, I offer a reconstruction of these two seemingly different lines of objection as raising instances of the same dilemma, giving neo-Aristotelians a choice between contradicting our considered moral judgment and abandoning metaethical naturalism. I argue that resolving the dilemma requires showing a particular kind of continuity between the norms of moral virtue and norms that are necessary for understanding non-human living things. I also argue that in order to show such a continuity, neo-Aristotelians need to revise the relationship they adopt with empirical science and acknowledge that the latter is relevant to assessing their central commitments regarding living things. Finally, I argue that to move this debate forward, both neo-Aristotelians and their critics should pay attention to recent work on the concept of organism in evolutionary and developmental biology
Analyticity and the Holographic S-Matrix
We derive a simple relation between the Mellin amplitude for AdS/CFT
correlation functions and the bulk S-Matrix in the flat spacetime limit,
proving a conjecture of Penedones. As a consequence of the Operator Product
Expansion, the Mellin amplitude for any unitary CFT must be a meromorphic
function with simple poles on the real axis. This provides a powerful and
suggestive handle on the locality vis-a-vis analyticity properties of the
S-Matrix. We begin to explore analyticity by showing how the familiar poles and
branch cuts of scattering amplitudes arise from the holographic description.
For this purpose we compute examples of Mellin amplitudes corresponding to
1-loop and 2-loop Witten diagrams in AdS. We also examine the flat spacetime
limit of conformal blocks, implicitly relating the S-Matrix program to the
Bootstrap program for CFTs. We use this connection to show how the existence of
small black holes in AdS leads to a universal prediction for the conformal
block decomposition of the dual CFT.Comment: 28+15 pages, 7 figures; v2: typos correcte
Evolutionary relationships between Rhynchosporium lolii sp. nov. and other Rhynchosporium species on grass.
Copyright: 2013 King et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedThe fungal genus Rhynchosporium (causative agent of leaf blotch) contains several host-specialised species, including R. commune (colonising barley and brome-grass), R. agropyri (couch-grass), R. secalis (rye and triticale) and the more distantly related R. orthosporum (cocksfoot). This study used molecular fingerprinting, multilocus DNA sequence data, conidial morphology, host range tests and scanning electron microscopy to investigate the relationship between Rhynchosporium species on ryegrasses, both economically important forage grasses and common wild grasses in many cereal growing areas, and other plant species. Two different types of Rhynchosporium were found on ryegrasses in the UK. Firstly, there were isolates of R. commune that were pathogenic to both barley and Italian ryegrass. Secondly, there were isolates of a new species, here named R. lolii, that were pathogenic only to ryegrass species. R. lolii was most closely related to R. orthosporum, but exhibited clear molecular, morphological and host range differences. The species was estimated to have diverged from R. orthosporum ca. 5735 years before the present. The colonisation strategy of all of the different Rhynchosporium species involved extensive hyphal growth in the sub-cuticular regions of the leaves. Finally, new species-specific PCR diagnostic tests were developed that could distinguish between these five closely related Rhynchosporium species.Peer reviewedFinal Published versio
Mellin Amplitudes for Dual Conformal Integrals
Motivated by recent work on the utility of Mellin space for representing
conformal correlators in /CFT, we study its suitability for representing
dual conformal integrals of the type which appear in perturbative scattering
amplitudes in super-Yang-Mills theory. We discuss Feynman-like rules for
writing Mellin amplitudes for a large class of integrals in any dimension, and
find explicit representations for several familiar toy integrals. However we
show that the power of Mellin space is that it provides simple representations
even for fully massive integrals, which except for the single case of the
4-mass box have not yet been computed by any available technology. Mellin space
is also useful for exhibiting differential relations between various multi-loop
integrals, and we show that certain higher-loop integrals may be written as
integral operators acting on the fully massive scalar -gon in
dimensions, whose Mellin amplitude is exactly 1. Our chief example is a very
simple formula expressing the 6-mass double box as a single integral of the
6-mass scalar hexagon in 6 dimensions.Comment: 29+7 page
On Feynman rules for Mellin amplitudes in AdS/CFT
The computation of CFT correlation functions via Witten diagrams in AdS space
can be simplified via the Mellin transform. Recently a set of Feynman rules for
tree-level Mellin space amplitudes has been proposed for scalar theories. In
this note we derive these rules by explicitly evaluating all of the relevant
Witten diagram integrals for the scalar phi^n theory. We also check that the
rules reduce to the usual Feynman rules in the flat space limit.Comment: minor corrections, published versio
A natural little hierarchy for RS from accidental SUSY
We use supersymmetry to address the little hierarchy problem in
Randall-Sundrum models by naturally generating a hierarchy between the IR scale
and the electroweak scale. Supersymmetry is broken on the UV brane which
triggers the stabilization of the warped extra dimension at an IR scale of
order 10 TeV. The Higgs and top quark live near the IR brane whereas light
fermion generations are localized towards the UV brane. Supersymmetry breaking
causes the first two sparticle generations to decouple, thereby avoiding the
supersymmetric flavour and CP problems, while an accidental R-symmetry protects
the gaugino mass. The resulting low-energy sparticle spectrum consists of
stops, gauginos and Higgsinos which are sufficient to stabilize the little
hierarchy between the IR scale and the electroweak scale. Finally, the
supersymmetric little hierarchy problem is ameliorated by introducing a singlet
Higgs field on the IR brane.Comment: 37 pages, 3 figures; v2: minor corrections, version published in JHE
A retrospective study of cochlear implant outcomes in children with residual hearing
BACKGROUND: There has been increasing demand for the cochlear implantation of children who demonstrate some auditory capacity with conventional hearing aids. The purpose of this study was to examine speech recognition outcomes in a group of children who were regarded as borderline candidates for cochlear implantation as their residual hearing and/or auditory functioning levels exceeded typical audiologic candidacy criteria. METHODS: A retrospective chart review was undertaken at one Canadian cochlear implant centre to identify children implanted at age 4 or older with a pure-tone-average of 90 dB or better and speech recognition of 30% or greater. Pre-implant and post-implant open-set word and sentence test scores were analyzed. RESULTS: Eleven children of 195 paediatric cochlear implant recipients met the inclusion criteria for this study. Speech recognition results for the10 English-speaking children indicated significant gains in both open-set word and sentence understanding within the first 6 to 12 months of implant use. Seven of 9 children achieved 80% open-set sentence recognition within 12 months post-surgery. CONCLUSION: Children with several years of experience using conventional amplification demonstrated rapid progress in auditory skills following cochlear implantation. These findings suggest that cochlear implantation may be an appropriate intervention for selected children with severe hearing losses and/or auditory capacity outside current candidacy criteria
The Cosmology of Composite Inelastic Dark Matter
Composite dark matter is a natural setting for implementing inelastic dark
matter - the O(100 keV) mass splitting arises from spin-spin interactions of
constituent fermions. In models where the constituents are charged under an
axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark
matter scatters inelastically off Standard Model nuclei and can explain the
DAMA/LIBRA annual modulation signal. This article describes the early Universe
cosmology of a minimal implementation of a composite inelastic dark matter
model where the dark matter is a meson composed of a light and a heavy quark.
The synthesis of the constituent quarks into dark mesons and baryons results in
several qualitatively different configurations of the resulting dark matter
hadrons depending on the relative mass scales in the system.Comment: 31 pages, 4 figures; references added, typos correcte
- …