340 research outputs found
Galaxy Bias and non-Linear Structure Formation in General Relativity
Length scales probed by large scale structure surveys are becoming closer to
the horizon scale. Further, it has been recently understood that
non-Gaussianity in the initial conditions could show up in a scale dependence
of the bias of galaxies at the largest distances. It is therefore important to
include General Relativistic effects. Here we provide a General Relativistic
generalization of the bias, valid both for Gaussian and non-Gaussian initial
conditions. The collapse of objects happens on very small scales, while
long-wavelength modes are always in the quasi linear regime. Around every
collapsing region, it is therefore possible to find a reference frame that is
valid for all times and where the space time is almost flat: the Fermi frame.
Here the Newtonian approximation is applicable and the equations of motion are
the ones of the N-body codes. The effects of long-wavelength modes are encoded
in the mapping from the cosmological frame to the local frame. For the linear
bias, the effect of the long-wavelength modes on the dynamics is encoded in the
local curvature of the Universe, which allows us to define a General
Relativistic generalization of the bias in the standard Newtonian setting. We
show that the bias due to this effect goes to zero as the squared ratio of the
physical wavenumber with the Hubble scale for modes longer than the horizon, as
modes longer than the horizon have no dynamical effects. However, the bias due
to non-Gaussianities does not need to vanish for modes longer than the Hubble
scale, and for non-Gaussianities of the local kind it goes to a constant. As a
further application, we show that it is not necessary to perform large N-body
simulations to extract information on long-wavelength modes: N-body simulations
can be done on small scales and long-wavelength modes are encoded simply by
adding curvature to the simulation and rescaling the coordinates.Comment: 48 pages, 4 figures; v2: added references, JCAP published versio
Heavy episodic drinking on college campuses: Does changing the legal drinking age make a difference
ABSTRACT. Objective: This article extends the compartmental model previously developed by Scribner et al. in the context of college drinking to a mathematical model of the consequences of lowering the legal drinking age. Method: Using data available from 32 U.S. campuses, the analyses separate underage and legal age drinking groups into an eight-compartment model with different alcohol availability (wetness) for the underage and legal age groups. The model evaluates the likelihood that underage students will incorrectly perceive normative drinking levels to be higher than they actually are (i.e., misperception) and adjust their drinking accordingly by varying the interaction between underage students in social and heavy episodic drinking compartments. Results: The results evaluate the total heavy episodic drinker population and its dependence on the difference in misperception, as well as its dependence on underage wetness, legal age wetness, and drinking age. Conclusions: Results suggest that an unrealistically extreme combination of high wetness and low enforcement would be needed for the policies related to lowering the drinking age to be effective. (J. Stud. Alcohol Drugs, 72
Model-independent search for CP violation in D0→K−K+π−π+ and D0→π−π+π+π− decays
A search for CP violation in the phase-space structures of D0 and View the MathML source decays to the final states K−K+π−π+ and π−π+π+π− is presented. The search is carried out with a data set corresponding to an integrated luminosity of 1.0 fb−1 collected in 2011 by the LHCb experiment in pp collisions at a centre-of-mass energy of 7 TeV. For the K−K+π−π+ final state, the four-body phase space is divided into 32 bins, each bin with approximately 1800 decays. The p-value under the hypothesis of no CP violation is 9.1%, and in no bin is a CP asymmetry greater than 6.5% observed. The phase space of the π−π+π+π− final state is partitioned into 128 bins, each bin with approximately 2500 decays. The p-value under the hypothesis of no CP violation is 41%, and in no bin is a CP asymmetry greater than 5.5% observed. All results are consistent with the hypothesis of no CP violation at the current sensitivity
Search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓
A search for the lepton-flavor-violating decays Bs0→e±μ∓ and B0→e±μ∓ is performed with a data sample, corresponding to an integrated luminosity of 1.0 fb-1 of pp collisions at √s=7 TeV, collected by the LHCb experiment. The observed number of Bs0→e±μ∓ and B0→e±μ∓ candidates is consistent with background expectations. Upper limits on the branching fractions of both decays are determined to be B(Bs0→e±μ∓)101 TeV/c2 and MLQ(B0→e±μ∓)>126 TeV/c2 at 95% C.L., and are a factor of 2 higher than the previous bounds
Measurements of long-range near-side angular correlations in TeV proton-lead collisions in the forward region
Two-particle angular correlations are studied in proton-lead collisions at a
nucleon-nucleon centre-of-mass energy of TeV, collected
with the LHCb detector at the LHC. The analysis is based on data recorded in
two beam configurations, in which either the direction of the proton or that of
the lead ion is analysed. The correlations are measured in the laboratory
system as a function of relative pseudorapidity, , and relative
azimuthal angle, , for events in different classes of event
activity and for different bins of particle transverse momentum. In
high-activity events a long-range correlation on the near side, , is observed in the pseudorapidity range . This
measurement of long-range correlations on the near side in proton-lead
collisions extends previous observations into the forward region up to
. The correlation increases with growing event activity and is found
to be more pronounced in the direction of the lead beam. However, the
correlation in the direction of the lead and proton beams are found to be
compatible when comparing events with similar absolute activity in the
direction analysed.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-040.htm
Evidence for the strangeness-changing weak decay
Using a collision data sample corresponding to an integrated luminosity
of 3.0~fb, collected by the LHCb detector, we present the first search
for the strangeness-changing weak decay . No
hadron decay of this type has been seen before. A signal for this decay,
corresponding to a significance of 3.2 standard deviations, is reported. The
relative rate is measured to be
, where and
are the and fragmentation
fractions, and is the branching
fraction. Assuming is bounded between 0.1 and
0.3, the branching fraction would lie
in the range from to .Comment: 7 pages, 2 figures, All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-047.htm
Study of the production of and hadrons in collisions and first measurement of the branching fraction
The product of the () differential production
cross-section and the branching fraction of the decay () is
measured as a function of the beauty hadron transverse momentum, ,
and rapidity, . The kinematic region of the measurements is and . The measurements use a data sample
corresponding to an integrated luminosity of collected by the
LHCb detector in collisions at centre-of-mass energies in 2011 and in 2012. Based on previous LHCb
results of the fragmentation fraction ratio, , the
branching fraction of the decay is
measured to be \begin{equation*} \mathcal{B}(\Lambda_b^0\rightarrow J/\psi
pK^-)= (3.17\pm0.04\pm0.07\pm0.34^{+0.45}_{-0.28})\times10^{-4},
\end{equation*} where the first uncertainty is statistical, the second is
systematic, the third is due to the uncertainty on the branching fraction of
the decay , and the
fourth is due to the knowledge of . The sum of the
asymmetries in the production and decay between and
is also measured as a function of and .
The previously published branching fraction of , relative to that of , is updated.
The branching fractions of are determined.Comment: 29 pages, 19figures. All figures and tables, along with any
supplementary material and additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-032.htm
flavour tagging using charm decays at the LHCb experiment
An algorithm is described for tagging the flavour content at production of
neutral mesons in the LHCb experiment. The algorithm exploits the
correlation of the flavour of a meson with the charge of a reconstructed
secondary charm hadron from the decay of the other hadron produced in the
proton-proton collision. Charm hadron candidates are identified in a number of
fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is
calibrated on the self-tagged decay modes and using of data collected by the LHCb
experiment at centre-of-mass energies of and
. Its tagging power on these samples of
decays is .Comment: All figures and tables, along with any supplementary material and
additional information, are available at
http://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2015-027.htm
- …