3 research outputs found

    On differences in the equation-of-state for a selection of seven representative mammalian tissue analogue materials

    Get PDF
    Tissue analogues employed for ballistic purposes are often monolithic in nature, e.g. ballistic gelatin and soap, etc. However, such constructs are not representative of real-world biological systems. Further, ethical considerations limit the ability to test with real-world tissues. This means that availability and understanding of accurate tissue simulants is of key importance. Here, the shock response of a wide range of ballistic simulants (ranging from dermal (protective / bulk) through to skeletal simulant materials) determined via plate-impact experiments are discussed, with a particular focus on the classification of the behaviour of differing simulants into groups that exhibit a similar response under high strain-rate loading. Resultant Hugoniot equation-of-state data (Us-up; P-v) provides appropriate feedstock materials data for future hydrocode simulations of ballistic impact events

    The effects of quasi-one-dimensional shock on Escherichia coli while controlling pressure and temperature

    Get PDF
    The response of microorganisms to high pressures is of growing interest in the literature, regarding areas of research including the sterilisation of foodstuffs, panspermia and, more generally, the study of extremophiles. When examining organisms under shock pressure, there are a number of caveats that need to be considered, including temperature and the nature of the shock wave front. Both of these caveats have been explored in this study through the application of the plate impact technique to create quasi-one-dimensional shock waves with controlled shock fronts through bacterial targets. This was achieved using typical planar flyer plates to study the dynamic pressure response of the bacterium, Escherichia coli NCTC 10538. Additionally, in order to create an adiabatic, off-Hugoniot loading path, a novel graded areal density flyer produced by the Surfi-Sculpt® approach was used to assess the effects of lowering temperature during shock on E. coli growth rates. The maximum temperature generated by a Surfi-Sculpt® flyer impact was 5 K less than that produced by the planar flyer analogue. Higher growth rates of bacterial colonies post-impact by the Surfi-Sculpt® flyer compared to those by the planar flyer were observed, with this behaviour determined to be a possible function of the nature, although temperature was also decreased with the use of this adiabatic ramp loading technique. In an effort to purposefully increase pressure and temperature for the E. coli samples, a modified form of a previously developed bacterial encapsulation system was also employed in this study, allowing pressures of up to 10 GPa and growth rates of up to 0.09% to be reached

    Pressure tolerance of Artemia cysts compressed in water medium

    Get PDF
    The high pressure tolerance of cysts of Artemia salina was investigated up to several GPa in water. No survival was observed after exposure to 1.0 GPa for 15 min. After exposure to 2.0 GPa for the same time duration, the hatching rate had recovered to 33%, but decreased to 8% following compression at 7.5 GPa. This contrasts with results using Fluorinert™ as the pressure-transmitting medium where 80–88% recovery was observed. The lower survival rate in water is accompanied by swelling of the eggs, indicating that liquid H2O close to the ice-VI crystallization pressure penetrated inside the eggs. This pressure exceeds the stability limit for proteins and other key biomolecules components within the embryos that could not be resuscitated. Rehydration takes several minutes and so was not completed for all samples compressed to higher pressures, prior to ice-VI formation, resulting in renewed survival. However H2O penetration inside the shell resulted in increased mortalit
    corecore