1,097 research outputs found
Triggering synchronized oscillations through arbitrarily weak diversity in close-to-threshold excitable media
It is shown that arbitrarily weak (frozen) heterogeneity can induce global
synchronized oscillations in excitable media close to threshold. The work is
carried out on networks of coupled van der Pol-FitzHugh-Nagumo oscillators. The
result is shown to be robust against the presence of internal dynamical noise.Comment: 4 pages (RevTeX 3 style), 5 EPS figures, submitted to Phys. Rev. E
(16 aug 2001
Limits and dynamics of stochastic neuronal networks with random heterogeneous delays
Realistic networks display heterogeneous transmission delays. We analyze here
the limits of large stochastic multi-populations networks with stochastic
coupling and random interconnection delays. We show that depending on the
nature of the delays distributions, a quenched or averaged propagation of chaos
takes place in these networks, and that the network equations converge towards
a delayed McKean-Vlasov equation with distributed delays. Our approach is
mostly fitted to neuroscience applications. We instantiate in particular a
classical neuronal model, the Wilson and Cowan system, and show that the
obtained limit equations have Gaussian solutions whose mean and standard
deviation satisfy a closed set of coupled delay differential equations in which
the distribution of delays and the noise levels appear as parameters. This
allows to uncover precisely the effects of noise, delays and coupling on the
dynamics of such heterogeneous networks, in particular their role in the
emergence of synchronized oscillations. We show in several examples that not
only the averaged delay, but also the dispersion, govern the dynamics of such
networks.Comment: Corrected misprint (useless stopping time) in proof of Lemma 1 and
clarified a regularity hypothesis (remark 1
Noise Induced Coherence in Neural Networks
We investigate numerically the dynamics of large networks of globally
pulse-coupled integrate and fire neurons in a noise-induced synchronized state.
The powerspectrum of an individual element within the network is shown to
exhibit in the thermodynamic limit () a broadband peak and an
additional delta-function peak that is absent from the powerspectrum of an
isolated element. The powerspectrum of the mean output signal only exhibits the
delta-function peak. These results are explained analytically in an exactly
soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure
Dynamics of lattice spins as a model of arrhythmia
We consider evolution of initial disturbances in spatially extended systems
with autonomous rhythmic activity, such as the heart. We consider the case when
the activity is stable with respect to very smooth (changing little across the
medium) disturbances and construct lattice models for description of
not-so-smooth disturbances, in particular, topological defects; these models
are modifications of the diffusive XY model. We find that when the activity on
each lattice site is very rigid in maintaining its form, the topological
defects - vortices or spirals - nucleate a transition to a disordered,
turbulent state.Comment: 17 pages, revtex, 3 figure
Structural Stability and Renormalization Group for Propagating Fronts
A solution to a given equation is structurally stable if it suffers only an
infinitesimal change when the equation (not the solution) is perturbed
infinitesimally. We have found that structural stability can be used as a
velocity selection principle for propagating fronts. We give examples, using
numerical and renormalization group methods.Comment: 14 pages, uiucmac.tex, no figure
Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSiO
Besides being an ancient pigment, BaCuSiO is a quasi-2D magnetic
insulator with a gapped spin dimer ground state. The application of strong
magnetic fields closes this gap creating a gas of bosonic spin triplet
excitations called triplons. The topology of the spin lattice makes
BaCuSiO an ideal candidate for studying the Bose-Einstein condensation
of triplons as a function of the external magnetic field, which acts as a
chemical potential. In agreement with quantum Monte Carlo numerical
simulations, we observe a distinct lambda-anomaly in the specific heat together
with a maximum in the magnetic susceptibility upon cooling down to liquid
Helium temperatures.Comment: published on August 20, 200
Excitability in autonomous Boolean networks
We demonstrate theoretically and experimentally that excitable systems can be
built with autonomous Boolean networks. Their experimental implementation is
realized with asynchronous logic gates on a reconfigurabe chip. When these
excitable systems are assembled into time-delay networks, their dynamics
display nanosecond time-scale spike synchronization patterns that are
controllable in period and phase.Comment: 6 pages, 5 figures, accepted in Europhysics Letters
(epljournal.edpsciences.org
General theory of instabilities for patterns with sharp interfaces in reaction-diffusion systems
An asymptotic method for finding instabilities of arbitrary -dimensional
large-amplitude patterns in a wide class of reaction-diffusion systems is
presented. The complete stability analysis of 2- and 3-dimensional localized
patterns is carried out. It is shown that in the considered class of systems
the criteria for different types of instabilities are universal. The specific
nonlinearities enter the criteria only via three numerical constants of order
one. The performed analysis explains the self-organization scenarios observed
in the recent experiments and numerical simulations of some concrete
reaction-diffusion systems.Comment: 21 pages (RevTeX), 8 figures (Postscript). To appear in Phys. Rev. E
(April 1st, 1996
Stochastic Resonance in Nonpotential Systems
We propose a method to analytically show the possibility for the appearance
of a maximum in the signal-to-noise ratio in nonpotential systems. We apply our
results to the FitzHugh-Nagumo model under a periodic external forcing, showing
that the model exhibits stochastic resonance. The procedure that we follow is
based on the reduction to a one-dimensional dynamics in the adiabatic limit,
and in the topology of the phase space of the systems under study. Its
application to other nonpotential systems is also discussed.Comment: Submitted to Phys. Rev.
The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors
In the intermediate state of a thin type-I superconductor magnetic flux
penetrates in a disordered set of highly branched and fingered macroscopic
domains. To understand these shapes, we study in detail a recently proposed
"current-loop" (CL) model that models the intermediate state as a collection of
tense current ribbons flowing along the superconducting-normal interfaces and
subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau's original conformal
mapping treatment of the laminar state, in which the superconductor-normal
interfaces are flared within the slab, and of a closely-related straight-lamina
model. A simplified dynamical model is described that elucidates the nature of
possible shape instabilities of flux stripes and stripe arrays, and numerical
studies of the highly nonlinear regime of those instabilities demonstrate
patterns like those seen experimentally. Of particular interest is the buckling
instability commonly seen in the intermediate state. The free-boundary approach
further allows for a calculation of the elastic properties of the laminar
state, which closely resembles that of smectic liquid crystals. We suggest
several new experiments to explore of flux domain shape instabilities,
including an Eckhaus instability induced by changing the out-of-plane magnetic
field, and an analog of the Helfrich-Hurault instability of smectics induced by
an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to
Phys. Rev. B. Higher resolution figures may be obtained by contacting the
author
- …