976 research outputs found
A propensity criterion for networking in an array of coupled chaotic systems
We examine the mutual synchronization of a one dimensional chain of chaotic
identical objects in the presence of a stimulus applied to the first site. We
first describe the characteristics of the local elements, and then the process
whereby a global nontrivial behaviour emerges. A propensity criterion for
networking is introduced, consisting in the coexistence within the attractor of
a localized chaotic region, which displays high sensitivity to external
stimuli,and an island of stability, which provides a reliable coupling signal
to the neighbors in the chain. Based on this criterion we compare homoclinic
chaos, recently explored in lasers and conjectured to be typical of a single
neuron, with Lorenz chaos.Comment: 4 pages, 3 figure
Magnetic Field-Induced Condensation of Triplons in Han Purple Pigment BaCuSiO
Besides being an ancient pigment, BaCuSiO is a quasi-2D magnetic
insulator with a gapped spin dimer ground state. The application of strong
magnetic fields closes this gap creating a gas of bosonic spin triplet
excitations called triplons. The topology of the spin lattice makes
BaCuSiO an ideal candidate for studying the Bose-Einstein condensation
of triplons as a function of the external magnetic field, which acts as a
chemical potential. In agreement with quantum Monte Carlo numerical
simulations, we observe a distinct lambda-anomaly in the specific heat together
with a maximum in the magnetic susceptibility upon cooling down to liquid
Helium temperatures.Comment: published on August 20, 200
How Gibbs distributions may naturally arise from synaptic adaptation mechanisms. A model-based argumentation
This paper addresses two questions in the context of neuronal networks
dynamics, using methods from dynamical systems theory and statistical physics:
(i) How to characterize the statistical properties of sequences of action
potentials ("spike trains") produced by neuronal networks ? and; (ii) what are
the effects of synaptic plasticity on these statistics ? We introduce a
framework in which spike trains are associated to a coding of membrane
potential trajectories, and actually, constitute a symbolic coding in important
explicit examples (the so-called gIF models). On this basis, we use the
thermodynamic formalism from ergodic theory to show how Gibbs distributions are
natural probability measures to describe the statistics of spike trains, given
the empirical averages of prescribed quantities. As a second result, we show
that Gibbs distributions naturally arise when considering "slow" synaptic
plasticity rules where the characteristic time for synapse adaptation is quite
longer than the characteristic time for neurons dynamics.Comment: 39 pages, 3 figure
Emergent global oscillations in heterogeneous excitable media: The example of pancreatic beta cells
Using the standard van der Pol-FitzHugh-Nagumo excitable medium model I
demonstrate a novel generic mechanism, diversity, that provokes the emergence
of global oscillations from individually quiescent elements in heterogeneous
excitable media. This mechanism may be operating in the mammalian pancreas,
where excitable beta cells, quiescent when isolated, are found to oscillate
when coupled despite the absence of a pacemaker region.Comment: See home page http://lec.ugr.es/~julya
New conditional symmetries and exact solutions of nonlinear reaction-diffusion-convection equations. II
In the first part of this paper math-ph/0612078, a complete description of
Q-conditional symmetries for two classes of reaction-diffusion-convection
equations with power diffusivities is derived. It was shown that all the known
results for reaction-diffusion equations with power diffusivities follow as
particular cases from those obtained in math-ph/0612078 but not vise versa. In
the second part the symmetries obtained in are successfully applied for
constructing exact solutions of the relevant equations. In the particular case,
new exact solutions of nonlinear reaction-diffusion-convection (RDC) equations
arising in application and their natural generalizations are found
The Shapes of Flux Domains in the Intermediate State of Type-I Superconductors
In the intermediate state of a thin type-I superconductor magnetic flux
penetrates in a disordered set of highly branched and fingered macroscopic
domains. To understand these shapes, we study in detail a recently proposed
"current-loop" (CL) model that models the intermediate state as a collection of
tense current ribbons flowing along the superconducting-normal interfaces and
subject to the constraint of global flux conservation. The validity of this
model is tested through a detailed reanalysis of Landau's original conformal
mapping treatment of the laminar state, in which the superconductor-normal
interfaces are flared within the slab, and of a closely-related straight-lamina
model. A simplified dynamical model is described that elucidates the nature of
possible shape instabilities of flux stripes and stripe arrays, and numerical
studies of the highly nonlinear regime of those instabilities demonstrate
patterns like those seen experimentally. Of particular interest is the buckling
instability commonly seen in the intermediate state. The free-boundary approach
further allows for a calculation of the elastic properties of the laminar
state, which closely resembles that of smectic liquid crystals. We suggest
several new experiments to explore of flux domain shape instabilities,
including an Eckhaus instability induced by changing the out-of-plane magnetic
field, and an analog of the Helfrich-Hurault instability of smectics induced by
an in-plane field.Comment: 23 pages, 22 bitmapped postscript figures, RevTex 3.0, submitted to
Phys. Rev. B. Higher resolution figures may be obtained by contacting the
author
Numerical Solution of Differential Equations by the Parker-Sochacki Method
A tutorial is presented which demonstrates the theory and usage of the
Parker-Sochacki method of numerically solving systems of differential
equations. Solutions are demonstrated for the case of projectile motion in air,
and for the classical Newtonian N-body problem with mutual gravitational
attraction.Comment: Added in July 2010: This tutorial has been posted since 1998 on a
university web site, but has now been cited and praised in one or more
refereed journals. I am therefore submitting it to the Cornell arXiv so that
it may be read in response to its citations. See "Spiking neural network
simulation: numerical integration with the Parker-Sochacki method:" J. Comput
Neurosci, Robert D. Stewart & Wyeth Bair and
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2717378
Noise Induced Coherence in Neural Networks
We investigate numerically the dynamics of large networks of globally
pulse-coupled integrate and fire neurons in a noise-induced synchronized state.
The powerspectrum of an individual element within the network is shown to
exhibit in the thermodynamic limit () a broadband peak and an
additional delta-function peak that is absent from the powerspectrum of an
isolated element. The powerspectrum of the mean output signal only exhibits the
delta-function peak. These results are explained analytically in an exactly
soluble oscillator model with global phase coupling.Comment: 4 pages ReVTeX and 3 postscript figure
Heterogeneous Delays in Neural Networks
We investigate heterogeneous coupling delays in complex networks of excitable
elements described by the FitzHugh-Nagumo model. The effects of discrete as
well as of uni- and bimodal continuous distributions are studied with a focus
on different topologies, i.e., regular, small-world, and random networks. In
the case of two discrete delay times resonance effects play a major role:
Depending on the ratio of the delay times, various characteristic spiking
scenarios, such as coherent or asynchronous spiking, arise. For continuous
delay distributions different dynamical patterns emerge depending on the width
of the distribution. For small distribution widths, we find highly synchronized
spiking, while for intermediate widths only spiking with low degree of
synchrony persists, which is associated with traveling disruptions, partial
amplitude death, or subnetwork synchronization, depending sensitively on the
network topology. If the inhomogeneity of the coupling delays becomes too
large, global amplitude death is induced
Analytical, Optimal, and Sparse Optimal Control of Traveling Wave Solutions to Reaction-Diffusion Systems
This work deals with the position control of selected patterns in
reaction-diffusion systems. Exemplarily, the Schl\"{o}gl and FitzHugh-Nagumo
model are discussed using three different approaches. First, an analytical
solution is proposed. Second, the standard optimal control procedure is
applied. The third approach extends standard optimal control to so-called
sparse optimal control that results in very localized control signals and
allows the analysis of second order optimality conditions.Comment: 22 pages, 3 figures, 2 table
- …