94 research outputs found
Modeling instrumental field-dependent aberrations in the NIRC2 instrument on the Keck II telescope
We present a model of field-dependent aberrations arising in the NIRC2 instrument on the W. M. Keck II telescope. We use high signal-to-noise phase diversity data employing a source in the Nasmyth focal plane to construct a model of the optical path difference as a function of field position and wavelength. With a differential wavefront error of up to 190 nm, this effect is one of the main sources of astrometric and photometric measurement uncertainties. Our tests of temporal stability show sufficient reliability for our measurements over a 20-month period at the field extrema. Additionally, while chromaticity exists, applying a correction for field-dependent aberrations provides overall improvement compared to the existing aberrations present across the field of view
Station report on the Goddard Space Flight Center (GSFC) 1.2 meter telescope facility
The 1.2 meter telescope system was built for the Goddard Space Flight Center (GSFC) in 1973-74 by the Kollmorgen Corporation as a highly accurate tracking telescope. The telescope is an azimuth-elevation mounted six mirror Coude system. The facility has been used for a wide range of experimentation including helioseismology, two color refractometry, lunar laser ranging, satellite laser ranging, visual tracking of rocket launches, and most recently satellite and aircraft streak camera work. The telescope is a multi-user facility housed in a two story dome with the telescope located on the second floor above the experimenter's area. Up to six experiments can be accommodated at a given time, with actual use of the telescope being determined by the location of the final Coude mirror. The telescope facility is currently one of the primary test sites for the Crustal Dynamics Network's new UNIX based telescope controller software, and is also the site of the joint Crustal Dynamics Project / Photonics Branch two color research into atmospheric refraction
Characterizing and Improving the Data Reduction Pipeline for the Keck OSIRIS Integral Field Spectrograph
OSIRIS is a near-infrared (1.0--2.4 m) integral field spectrograph
operating behind the adaptive optics system at Keck Observatory, and is one of
the first lenslet-based integral field spectrographs. Since its commissioning
in 2005, it has been a productive instrument, producing nearly half the laser
guide star adaptive optics (LGS AO) papers on Keck. The complexity of its raw
data format necessitated a custom data reduction pipeline (DRP) delivered with
the instrument in order to iteratively assign flux in overlapping spectra to
the proper spatial and spectral locations in a data cube. Other than bug fixes
and updates required for hardware upgrades, the bulk of the DRP has not been
updated since initial instrument commissioning. We report on the first major
comprehensive characterization of the DRP using on-sky and calibration data. We
also detail improvements to the DRP including characterization of the flux
assignment algorithm; exploration of spatial rippling in the reduced data
cubes; and improvements to several calibration files, including the
rectification matrix, the bad pixel mask, and the wavelength solution. We
present lessons learned from over a decade of OSIRIS data reduction that are
relevant to the next generation of integral field spectrograph hardware and
data reduction software design.Comment: 18 pages, 16 figures; accepted for publication in A
Recommended from our members
A high-resolution map of human evolutionary constraint using 29 mammals.
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ∼4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ∼60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease
Chemoreceptor responsiveness at sea level does not predict the pulmonary pressure response to high altitude
The hypoxic ventilatory response (HVR) at sea level (SL) is moderately predictive of the
change in pulmonary artery systolic pressure (PASP) to acute normobaric hypoxia. However, because of
progressive changes in the chemoreflex control of breathing and acid-base balance at high altitude (HA),
HVR at SL may not predict PASP at HA. We hypothesized that resting peripheral oxyhemoglobin
saturation (SpO2) at HA would correlate better than HVR at SL to PASP at HA. In 20 participants at SL,
we measured normobaric, isocapnic HVR (L/min·-%SpO2
-1) and resting PASP using echocardiography.
Both resting SpO2 and PASP measures were repeated on day 2 (n=10), days 4-8 (n=12), and 2-3 weeks
(n=8) after arrival at 5050m. These data were also collected at 5050m on life-long HA residents (Sherpa;
n=21). Compared to SL, SpO2 decreased from 98.6 to 80.5% (P<0.001), while PASP increased from
21.7 to 34.0mmHg (P<0.001) after 2-3 weeks at 5050m. Isocapnic HVR at SL was not related to SpO2
or PASP at any time point at 5050m (all P>0.05). Sherpa had lower PASP (P<0.01) than lowlanders on
days 4-8 despite similar SpO2. Upon correction for hematocrit, Sherpa PASP was not different from
lowlanders at SL, but lower than lowlanders at all HA time points. At 5050m, whilst SpO2 was not
related to PASP in lowlanders at any point (all R2=0.50), there was a weak relationship in the
Sherpa (R2=0.16; P=0.07). We conclude that neither HVR at SL nor resting SpO2 at HA correlates with
elevations in PASP at HA
A High-Resolution Map of Human Evolutionary Constraint Using 29 Mammals
The comparison of related genomes has emerged as a powerful lens for genome interpretation. Here we report the sequencing and comparative analysis of 29 eutherian genomes. We confirm that at least 5.5% of the human genome has undergone purifying selection, and locate constrained elements covering ~4.2% of the genome. We use evolutionary signatures and comparisons with experimental data sets to suggest candidate functions for ~60% of constrained bases. These elements reveal a small number of new coding exons, candidate stop codon readthrough events and over 10,000 regions of overlapping synonymous constraint within protein-coding exons. We find 220 candidate RNA structural families, and nearly a million elements overlapping potential promoter, enhancer and insulator regions. We report specific amino acid residues that have undergone positive selection, 280,000 non-coding elements exapted from mobile elements and more than 1,000 primate- and human-accelerated elements. Overlap with disease-associated variants indicates that our findings will be relevant for studies of human biology, health and disease.National Human Genome Research Institute (U.S.)National Institute of General Medical Sciences (U.S.) (Grant number GM82901)National Science Foundation (U.S.). Postdoctural Fellowship (Award 0905968)National Science Foundation (U.S.). Career (0644282)National Institutes of Health (U.S.) (R01-HG004037)Alfred P. Sloan Foundation.Austrian Science Fund. Erwin Schrodinger Fellowshi
Ordering of mutations in preinvasive disease stages of esophageal carcinogenesis.
Cancer genome sequencing studies have identified numerous driver genes, but the relative timing of mutations in carcinogenesis remains unclear. The gradual progression from premalignant Barrett's esophagus to esophageal adenocarcinoma (EAC) provides an ideal model to study the ordering of somatic mutations. We identified recurrently mutated genes and assessed clonal structure using whole-genome sequencing and amplicon resequencing of 112 EACs. We next screened a cohort of 109 biopsies from 2 key transition points in the development of malignancy: benign metaplastic never-dysplastic Barrett's esophagus (NDBE; n=66) and high-grade dysplasia (HGD; n=43). Unexpectedly, the majority of recurrently mutated genes in EAC were also mutated in NDBE. Only TP53 and SMAD4 mutations occurred in a stage-specific manner, confined to HGD and EAC, respectively. Finally, we applied this knowledge to identify high-risk Barrett's esophagus in a new non-endoscopic test. In conclusion, mutations in EAC driver genes generally occur exceptionally early in disease development with profound implications for diagnostic and therapeutic strategies
The development of HISPEC for Keck and MODHIS for TMT: science cases and predicted sensitivities
HISPEC is a new, high-resolution near-infrared spectrograph being designed
for the W.M. Keck II telescope. By offering single-shot, R=100,000 between 0.98
- 2.5 um, HISPEC will enable spectroscopy of transiting and non-transiting
exoplanets in close orbits, direct high-contrast detection and spectroscopy of
spatially separated substellar companions, and exoplanet dynamical mass and
orbit measurements using precision radial velocity monitoring calibrated with a
suite of state-of-the-art absolute and relative wavelength references. MODHIS
is the counterpart to HISPEC for the Thirty Meter Telescope and is being
developed in parallel with similar scientific goals. In this proceeding, we
provide a brief overview of the current design of both instruments, and the
requirements for the two spectrographs as guided by the scientific goals for
each. We then outline the current science case for HISPEC and MODHIS, with
focuses on the science enabled for exoplanet discovery and characterization. We
also provide updated sensitivity curves for both instruments, in terms of both
signal-to-noise ratio and predicted radial velocity precision.Comment: 25 pages, 9 figures. To appear in the Proceedings of SPIE: Techniques
and Instrumentation for Detection of Exoplanets XI, vol. 12680 (2023
Donepezil Impairs Memory in Healthy Older Subjects: Behavioural, EEG and Simultaneous EEG/fMRI Biomarkers
Rising life expectancies coupled with an increasing awareness of age-related cognitive decline have led to the unwarranted use of psychopharmaceuticals, including acetylcholinesterase inhibitors (AChEIs), by significant numbers of healthy older individuals. This trend has developed despite very limited data regarding the effectiveness of such drugs on non-clinical groups and recent work indicates that AChEIs can have negative cognitive effects in healthy populations. For the first time, we use a combination of EEG and simultaneous EEG/fMRI to examine the effects of a commonly prescribed AChEI (donepezil) on cognition in healthy older participants. The short- and long-term impact of donepezil was assessed using two double-blind, placebo-controlled trials. In both cases, we utilised cognitive (paired associates learning (CPAL)) and electrophysiological measures (resting EEG power) that have demonstrated high-sensitivity to age-related cognitive decline. Experiment 1 tested the effects of 5 mg/per day dosage on cognitive and EEG markers at 6-hour, 2-week and 4-week follow-ups. In experiment 2, the same markers were further scrutinised using simultaneous EEG/fMRI after a single 5 mg dose. Experiment 1 found significant negative effects of donepezil on CPAL and resting Alpha and Beta band power. Experiment 2 replicated these results and found additional drug-related increases in the Delta band. EEG/fMRI analyses revealed that these oscillatory differences were associated with activity differences in the left hippocampus (Delta), right frontal-parietal network (Alpha), and default-mode network (Beta). We demonstrate the utility of simple cognitive and EEG measures in evaluating drug responses after acute and chronic donepezil administration. The presentation of previously established markers of age-related cognitive decline indicates that AChEIs can impair cognitive function in healthy older individuals. To our knowledge this is the first study to identify the precise neuroanatomical origins of EEG drug markers using simultaneous EEG/fMRI. The results of this study may be useful for evaluating novel drugs for cognitive enhancement
- …