3 research outputs found

    J1406+0102: Dust Obscured Galaxy Hiding Super Eddington Accretion System with Bright Radio Emission

    Full text link
    Recent high-zz quasar observations strongly indicate that super-Eddington accretion is a crucial phase to describe the existence of supermassive black holes (SMBHs) with MBH109MM_\mathrm{BH} \gtrsim 10^9 M_\odot at z7z \gtrsim 7. Motivated by the theoretical suggestion that the super-Eddington phase efficiently produces outflows and jets bright in radio bands, we search and find a super-Eddington radio-loud dust-obscured galaxy (DOG) J1406+0102 at z=0.236z=0.236, through cross-matching of the infrared-bright DOGs of Noboriguchi et al. (2019) with the VLA/FIRST 1.4 GHz radio and the SDSS optical spectral catalog. DOG J1406+0102 shows broad components in the Balmer lines. Assuming those lines are from the broad line region, it gives BH mass estimation of log (MBH/M)=7.30±0.25\log\ (M_\mathrm{BH}/M_\odot)=7.30 \pm 0.25, and AGN luminosity of log(Lbol,[OIII]/erg s1)=45.91±0.38\log (L_\mathrm{bol,[OIII]}/\mathrm{erg}~\mathrm{s}^{-1}) = 45.91\pm0.38 estimated from the intrinsic [OIII] luminosity, resulting in super-Eddington accretion of λEdd3\lambda_\mathrm{Edd}\simeq 3. We show that 1) DOG J1406+0102 is operating strong AGN feedback: the [OIII] outflow velocity exceeds the escape velocity of the host galaxy halo and the kinetic efficiency is obtained as \approx 8% that can be sufficient to quench the host galaxy, 2) the expected future growth pathway of DOG J1406+0102 would join an over-massive BH trajectory and 3) radio-loud DOGs can provide a significant contribution to the high-energy (\gtrsim 100 TeV) cosmic neutrino background if we assume DOG J1406+0102 as a representative of radio-loud DOGs.Comment: 10 pages, 5 figures, submitted to ApJ

    Tracing the rise of supermassive black holes A panchromatic search for faint, unobscured quasars at z & 6 with COSMOS-Web and other surveys

    Get PDF
    We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of Lbol = 1043–1046 erg s−1, residing in the reionization epoch within the redshift range of 6 . z . 8. These candidates were selected by harnessing the rich multiband datasets provided by the emerging JWST-driven extragalactic surveys, focusing on COSMOS-Web, as well as JADES, UNCOVER, CEERS, and PRIMER. Our search strategy includes two stages: applying stringent photometric cuts to catalog-level data and detailed spectral energy distribution fitting. These techniques effectively isolate the quasar candidates while mitigating contamination from low-redshift interlopers, such as brown dwarfs and nearby galaxies. The selected candidates indicate physical traits compatible with low-luminosity active galactic nuclei, likely hosting ≈105–107 M supermassive black holes (SMBHs) living in galaxies with stellar masses of ≈108–1010 M . The SMBHs selected in this study, on average, exhibit an elevated mass compared to their hosts, with the mass ratio distribution slightly higher than those of galaxies in the local Universe. As with other high-z studies, this is at least in part due to the selection method for these quasars. An extensive Monte Carlo analysis provides compelling evidence that heavy black hole seeds from the direct collapse scenario appear to be the preferred pathway to mature this specific subset of SMBHs by z ≈ 7. Notably, most of the selected candidates might have emerged from seeds with masses of ∼105 M , assuming a thin disk accretion with an average Eddington ratio of fEdd = 0.6±0.3 and a radiative efficiency of ε = 0.2±0.1. This work underscores the significance of further spectroscopic observations, as the quasar candidates presented here offer exceptional opportunities to delve into the nature of the earliest galaxies and SMBHs that formed during cosmic infancy.</p

    Tracing the rise of supermassive black holes A panchromatic search for faint, unobscured quasars at z &amp; 6 with COSMOS-Web and other surveys

    Get PDF
    We report the identification of 64 new candidates of compact galaxies, potentially hosting faint quasars with bolometric luminosities of Lbol = 1043–1046 erg s−1, residing in the reionization epoch within the redshift range of 6 . z . 8. These candidates were selected by harnessing the rich multiband datasets provided by the emerging JWST-driven extragalactic surveys, focusing on COSMOS-Web, as well as JADES, UNCOVER, CEERS, and PRIMER. Our search strategy includes two stages: applying stringent photometric cuts to catalog-level data and detailed spectral energy distribution fitting. These techniques effectively isolate the quasar candidates while mitigating contamination from low-redshift interlopers, such as brown dwarfs and nearby galaxies. The selected candidates indicate physical traits compatible with low-luminosity active galactic nuclei, likely hosting ≈105–107 M supermassive black holes (SMBHs) living in galaxies with stellar masses of ≈108–1010 M . The SMBHs selected in this study, on average, exhibit an elevated mass compared to their hosts, with the mass ratio distribution slightly higher than those of galaxies in the local Universe. As with other high-z studies, this is at least in part due to the selection method for these quasars. An extensive Monte Carlo analysis provides compelling evidence that heavy black hole seeds from the direct collapse scenario appear to be the preferred pathway to mature this specific subset of SMBHs by z ≈ 7. Notably, most of the selected candidates might have emerged from seeds with masses of ∼105 M , assuming a thin disk accretion with an average Eddington ratio of fEdd = 0.6±0.3 and a radiative efficiency of ε = 0.2±0.1. This work underscores the significance of further spectroscopic observations, as the quasar candidates presented here offer exceptional opportunities to delve into the nature of the earliest galaxies and SMBHs that formed during cosmic infancy.</p
    corecore