170 research outputs found

    Emergence of hyperons in failed supernovae: trigger of the black hole formation

    Full text link
    We investigate the emergence of strange baryons in the dynamical collapse of a non-rotating massive star to a black hole by the neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of nascent proto-neutron star from the gravitational collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s after the bounce to trigger the re-collapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS while the average energies and luminosities are quite similar between them. These features of neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.Comment: 11 pages, 3 figures, accepted for publication in ApJ

    SKEWNESS AND PERMUTATION

    Full text link
    The skewness criterion of phylogenetic structure in data is too sensitive to character state frequencies, is not sensitive enough to number of characters (degree of corroboration) and relies on counts of arbitrarily-resolved bifurcating trees. For these reasons it can give misleading results. Permutation tests lack those drawbacks and can be performed quickly by using approximate parsimony calculations, but the test based on minimal tree length can imply strong structure in ambiguous data. A more satisfactory test is obtained by using a support measure which takes multiple trees into account.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73640/1/j.1096-0031.1992.tb00071.x.pd

    Drawing Phylogenetic Trees

    Full text link
    We present linear-time algorithms for drawing phylogenetic trees in radial and circular representations. In radial drawings given edge lengths (representing evolutionary distances) are preserved, but labels (names of taxons represented in the leaves) need to be adjusted, whereas in circular drawings labels are perfectly spread out, but edge lengths adjusted. Our algorithms produce drawings that are unique solutions to reasonable criteria and assign to each subtree a wedge of its own. The linear running time is particularly interesting in the circular case, because our approach is a special case of Tutte s barycentric layout algorithm involving the solution of a system of linear equations

    Phylogeny of the Aplousobranchia (Tunicata: Ascidiacea)

    Full text link

    Asthma similarities across ProAR (Brazil) and U-BIOPRED (Europe) adult cohorts of contrasting locations, ethnicity and socioeconomic status

    Get PDF
    corecore