2,219 research outputs found
Heating and cooling a tri-level house with a hydronic baseboard-valance system
Cover title.Prepared as part of an investigation conducted by the Engineering Experiment Station, University of Illinois at Urbana-Champaign
Similarity-Detection and Localization
The detection of similarities between long DNA and protein sequences is
studied using concepts of statistical physics. It is shown that mutual
similarities can be detected by sequence alignment methods only if their amount
exceeds a threshold value. The onset of detection is a continuous phase
transition which can be viewed as a localization-delocalization transition. The
``fidelity'' of the alignment is the order parameter of that transition; it
leads to criteria for the selection of optimal alignment parameters.Comment: 4 pages including 4 figures (308kb post-script file
Spin-driven Phase Transitions in ZnCrSe and ZnCrS Probed by High Resolution Synchrotron X-ray and Neutron Powder Diffraction
The crystal and magnetic structures of the spinel compounds ZnCrS and
ZnCrSe were investigated by high resolution powder synchrotron and
neutron diffraction. ZnCrSe exhibits a first order phase transition at
K into an incommensurate helical magnetic structure. Magnetic
fluctuations above are coupled to the crystal lattice as manifested by
negative thermal expansion. Both, the complex magnetic structure and the
anomalous structural behavior can be related to magnetic frustration.
Application of an external magnetic field shifts the ordering temperature and
the regime of negative thermal expansion towards lower temperatures. Thereby,
the spin ordering changes into a conical structure. ZnCrS shows two
magnetic transitions at K and K that are accompanied by
structural phase transitions. The crystal structure transforms from the cubic
spinel-type (space group \={3}) at high temperatures in the paramagnetic
state, via a tetragonally distorted intermediate phase (space group /
) for into a low temperature orthorhombic phase
(space group ) for . The cooperative displacement of
sulfur ions by exchange striction is the origin of these structural phase
transitions. The low temperature structure of ZnCrS is identical to the
orthorhombic structure of magnetite below the Verwey transition. When applying
a magnetic field of 5 T the system shows an induced negative thermal expansion
in the intermediate magnetic phase as observed in ZnCrSe.Comment: 11 pages, 13 figures, to be published in PR
Melodic Intonation Therapy for aphasia: A multi-level meta-analysis of randomized controlled trials and individual participant data
Melodic Intonation Therapy (MIT) is a prominent rehabilitation program for individuals with post-stroke aphasia. Our meta-analysis investigated the efficacy of MIT while considering quality of outcomes, experimental design, influence of spontaneous recovery, MIT protocol variant, and level of generalization. Extensive literature search identified 606 studies in major databases and trial registers; of those, 22 studies-overall 129 participants-met all eligibility criteria. Multi-level mixed- and random-effects models served to separately meta-analyze randomized controlled trial (RCT) and non-RCT data. RCT evidence on validated outcomes revealed a small-to-moderate standardized effect in noncommunicative language expression for MIT-with substantial uncertainty. Unvalidated outcomes attenuated MIT's effect size compared to validated tests. MIT's effect size was 5.7 times larger for non-RCT data compared to RCT data (gĚ…case report = 2.01 vs. gĚ…RCT = 0.35 for validated Non-Communicative Language Expression measures). Effect size for non-RCT data decreased with number of months post-stroke, suggesting confound through spontaneous recovery. Deviation from the original MIT protocol did not systematically alter benefit from treatment. Progress on validated tests arose mainly from gains in repetition tasks rather than other domains of verbal expression, such as everyday communication ability. Our results confirm the promising role of MIT in improving trained and untrained performance on unvalidated outcomes, alongside validated repetition tasks, and highlight possible limitations in promoting everyday communication ability
Direct Measurement of the System-Environment Coupling as a Tool For Understanding Decoherence and Dynamical Decoupling
Decoherence is a major obstacle to any practical implementation of quantum
information processing. One of the leading strategies to reduce decoherence is
dynamical decoupling --- the use of an external field to average out the effect
of the environment. The decoherence rate under any control field can be
calculated if the spectrum of the coupling to the environment is known. We
present a direct measurement of the bath coupling spectrum in an ensemble of
optically trapped ultracold atoms, by applying a spectrally narrow-band control
field. The measured spectrum follows a Lorentzian shape at low frequencies, but
exhibits non-monotonic features at higher frequencies due to the oscillatory
motion of the atoms in the trap. These features agree with our analytical
models and numerical Monte-Carlo simulations of the collisional bath. From the
inferred bath-coupling spectrum, we predict the performance of well-known
dynamical decoupling sequences: CPMG, UDD and CDD. We then apply these
sequences in experiment and compare the results to predictions, finding good
agreement in the weak-coupling limit. Thus, our work establishes experimentally
the validity of the overlap integral formalism, and is an important step
towards the implementation of an optimal dynamical decoupling sequence for a
given measured bath spectrum.Comment: 9 pages, 6 figure
Effect of the tetrahedral distortion on the electronic properties of iron-pnictides
We study the dependence of the electronic structure of iron pnictides on the
angle formed by the arsenic-iron bonds. Within a Slater-Koster tight binding
model which captures the correct symmetry properties of the bands, we show that
the density of states and the band structure are sensitive to the distortion of
the tetrahedral environment of the iron atoms. This sensitivity is extremely
strong in a two-orbital (d_xz, d_yz) model due to the formation of a flat band
around the Fermi level. Inclusion of the d_xy orbital destroys the flat band
while keeping a considerable angle dependence in the band structure.Comment: 5 pages, including 5 figures. Fig. 5 replaced. Minor changes in the
tex
Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors
We report on the first measurement of 39Ar in argon from underground natural
gas reservoirs. The gas stored in the US National Helium Reserve was found to
contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be
<=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon
(39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National
Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most
important backgrounds in argon detectors for WIMP dark matter searches. The
findings reported demonstrate the possibility of constructing large multi-ton
argon detectors with low radioactivity suitable for WIMP dark matter searches.Comment: 6 pages, 2 figures, 2 table
Ipl1/aurora kinase suppresses S-CDK-driven spindle formation during prophase I to ensure chromosome integrity during meiosis
Cells coordinate spindle formation with DNA repair and morphological modifications to chromosomes prior to their segregation to prevent cell division with damaged chromosomes. Here we uncover a novel and unexpected role for Aurora kinase in preventing the formation of spindles by Clb5-CDK (S-CDK) during meiotic prophase I and when the DDR is active in budding yeast. This is critical since S-CDK is essential for replication during premeiotic S-phase as well as double-strand break induction that facilitates meiotic recombination and, ultimately, chromosome segregation. Furthermore, we find that depletion of Cdc5 polo kinase activity delays spindle formation in DDR-arrested cells and that ectopic expression of Cdc5 in prophase I enhances spindle formation, when Ipl1 is depleted. Our findings establish a new paradigm for Aurora kinase function in both negative and positive regulation of spindle dynamics
- …